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ABSTRACT

Additional flexible resources are required to achieve resilience and sustainable power systems.

Challenges emerged due to the increasing amounts of renewable generation penetrations at both

the bulk power system and the distribution sides. System operators are required to deal with

higher levels of variable and uncertain power outputs for various time-scales. Moreover, replacing

existing thermal units with other inertial-less technologies, make the system sensitive to even small

contingencies. Demand-side control is becoming an ingredient part of our future power system

operation. Effective utilization of demand-side resources can make the system more elastic to

integrate the future renewable plans. To help in resolving these challenges, this work develops a

demand-side control framework on the Thermostatically Controlled Loads (TCLs) to support the

grid with minimal impacts on customers’ comfort and devices’ integrity.

The Markov chain abstraction method is used to aggregate the TCLs and describe their collec-

tive dynamics. Statistical learning techniques of hidden Markov chain analysis is used to identify

the parameters of the resulting Markov chains at fixed temperature set-points. Various sensitivities

are conducted to reveal the optimal Markov chain representation. To allow extracting or storing

additional thermal energy, this thesis develops an Extended Markov Model(EMM) which describes

devices’ transition when a new set-point is instructed. The results have shown that the EMM is

able to capture both devices’ transient and steady-state behaviors under small and large set-point

adjustments.

Parameters heterogeneity affects the accuracy of the EMM model. In contrast to what proposed

in the literature, more comprehensive heterogeneous parameters are defined and considered. The K-

mean clustering approach is proposed in our analysis to minimize the heterogeneity error. Devices

are divided into multiple clusters based on the power ratings and cycling characteristics. The results
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have shown that clustering highly improves the EMM performance and minimize the heterogeneity

errors.

Under temperature set-point control the TCLs’ aggregated power experience two main chal-

lenges before it converges to the new steady-state value, the abrupt load change, and the power

oscillations. This is due to devices’ synchronous operations once a new operating set-point is or-

dered. Such power profiles may cause serious stability issues. Therefore, Model Predictive Control

(MPC) with direct ON/OFF switching capability is proposed to apply the set-point control sequen-

tially and prevent any possible power oscillations. The MPC can determine the optimal devices’

flow toward the new operating set-point. The results have shown that the proposed modeling and

control approaches highly minimize the required switching actions. Control actions are required

only during the transition between the set-points and finally converges to zero when all devices

reach the new set-point setting. In contrast, the models proposed in the literature require very

high switching rates which can cause damage or reducing devices’ life expectancy.

The last part of this thesis proposes a dispatching framework to utilize the TCLs’ flexibility.

The developed modeling and control techniques are used to support the grid with three demand

response ancillary services. Namely, spinning reserves, load reduction, and load shifting. The

three ancillary services are designed as demand response programs and integrated into the Security

Constrained Unit Commitment (SCUC) Problem. Three participation scenarios are considered to

evaluate the benefits of aggregating the TCLs in the day-ahead markets.
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CHAPTER 1. INTRODUCTION

1.1 General Introduction and Motivations

Current trends of expanding the capacities of renewable energy sources experience a rapid

growth worldwide. Many factors have motivated this transition, including fuel-free, clean, and

secure sources of power. Other factors like the feasibility of adopting large size capacities with

attendant decreases in investment costs also play major roles. These factors have motivated many

countries to establish their own renewable energy targets and to work diligently for achieving them

[1],[2],[3].

Renewable energy sources are usually treated as non-dispatchable source of power, i.e., sources

will supply their maximum available power while avoiding curtailments; a practice required to

improve their capacity factor and maintain competitive energy costs. This evolution has affected

power system operation and control; higher renewable energy penetration is expected to displace

more and more conventional thermal units. Current practices do not require renewable technologies

to be equipped with frequency support facilities. This will expose the power systems to operate with

lower inertia levels, higher power production variability, and uncertain environments. Therefore, in

absence of sufficient grid support, the system can be more sensitive to contingencies and vulnerable

to blackouts [4],[5].

System support can be deployed to protect the power systems in various short-term and long-

term ancillary services, such as regulation, load following, spinning, and non-spinning reserves [6].

The regulation reserves is required to maintain the real-time balance between generation and loads

in the seconds time scale. While the load following reserves are required to compensate for the

short-term fluctuations produced by the load or smoothing out the renewable energy power output.

Load following reserves are usually provided by the fast acting peaking units which are able to

ramp very quickly in the minute time-scale. The Base-case generation such as the coal-fired or
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nuclear power plants cannot change their output power very frequently and are not suitable for

such applications [7], [8].

Procurement of such ancillary services can be provided solely from the peaking units. However,

these units operate on fossil-fuel which has expensive operational costs. Thus, increasing the

amount of power capacities provided from these units will incur the system operation additional

costs that will be reflected in the electricity price. In addition, expansion of the generation fleet

with more fossil-fuel based units is against the environment protection objectives of reducing the

carbon emissions footprint [9].

These factors have motivated system operators to investigate additional flexible resources in

order to support the existing grid infrastructure. The Federal Energy Regulatory Commission

(FERC) in order 755 has motivated the utilities to search for additional resources to support the

system flexibility and invest more in clean resources [10],[11]. Demand Response (DR) resources

have been introduced recently for utilizing load-flexibility at the aggregate level and benefit the

overall system needs. Electric loads once operating and consuming power are considered synchro-

nized to the power systems and their contribution can provide potential support to the system

in various time-scales. Reserves extracted from flexible loads are equivalent to contributions from

other thermal units, and the aggregated response from DR programs can be more valuable and

economically feasible than services provided by other peaking units. Therefore, DR resources are

counted as a potential source for future grid flexibility [12].

In DR programs, customers are getting incentives to allow their loads being controlled as spec-

ified in their contracts or in the DR program specific rules. The contract also involves the control

restrictions and limitation such as the number of load interruptions, time limitations, and the com-

fort limits. Load-acceptability is facilitated by connecting the end-users loads with fast monitoring

and control infrastructure. The smart grids and the recent advancements in communication and

control systems at the distribution side, such as the Advanced Metering Infrastructure (AMI) and

the programmable thermostats, facilitate the deployment of the DR control and make it feasible

even over a wide geographical areas [13].
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The most prevailing loads at the distribution networks are the Thermostatically Controlled

Loads (TCLs) such as air-conditioners, space heaters, and water heaters [15]. The large number

of these devices makes the majority of energy consumption stems from the TCLs operation. For

instance, Fig.1.1 presents a residential energy consumption survey made by the Energy Information

Administration in 2009. The survey shows that the TCLs have the major energy consumption in

the residential buildings of the United States. The dominant TCL category is different based on

the climate characteristics of the region. For example, air-conditioners consume most of the energy

in the hot and humid climate regions like Florida, whereas space heaters are the largest consumers

in the cold region like New York. All of the cooling devices are operated by electricity. However,

not all of the heating loads are operated by electricity, other sources of energy such as the natural

gas also play a major role. Approximately, 40% of the heating loads in the United Stated operate

based on electricity [15]. Accordingly, TCLs in residential buildings can constitute a substantial

demand response resources, and their aggregation can provide potential support to power systems.

Figure 1.1 Residential energy consumption survey over the entier United States, Florida,

and New York [15].

The biggest advantage in utilizing the TCLs is the inherent thermal storage capability. This fea-

ture makes them an optimal form of flexible loads, one eligible for extracting considerable amount of

reserves by manipulating their temperature set-points. Implementing a demand response program

on TCLs requires involvement of ultimately large number of devices, such that the effects of the
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control actions will be minimal and will not cause customers discomfort (The indoor temperature

will be maintained within acceptable ranges).

DR implementation is still in its infancy stage. Some utilities have started conducting stud-

ies and performing pilot projects to leverage the potentials behind utilizing the TCLs. Current

implementations are restricted to a small number of customers getting incentives by bill credits

or discount rates on a voluntary basis. For instance, the summer discount plan offered by the

Southern California Edison Company (CA) uses a radio broadcasting signal to shut down the air-

conditioners (A/C) for up to 6 hours a day during emergency events [16]. In this program, the

utility allows the customers overriding six requesting signals over the year while receiving a $200

as a bill credits. The Commonwealth Edison Company (ComEd) offers the Peak Time Saving

program by installing a wireless switch to control the A/C devices during the summer peaks [17].

The control actions are limited to completely turning the A/C devices OFF or reducing their ON

cycling time. The Potomac Electric Power Company (MD) [18] under the Smart Grid Project

install advanced programmable thermostats accessible through the internet to turn devices OFF or

adjusting the operating ON and OFF cycling times. The City of Ames offers a DR program called

”Efficient Air Conditioner Rebate” which allows the utility to control a group of air-conditioning

units during the summer peaks. Participants are required to install a device called ”Prime Time

Power Switch”. This device allows the air-conditioners receive a radio broadcasting signals to turn

OFF the devices during the summer peaks [19]. There are many other electric utilities offering DR

programs on the air-conditioning loads which have similar roles and objectives [20],[21].

The ultimate objective of all DR programs currently implemented is to manage the summer

peaks by reducing the customers demand. This demand reduction will help the utilities in avoiding

purchasing a high-priced power from the wholesale market and maximizing their own benefits. On

the other hand, DR requesting events turn off the devices or reduce the ON cycling time. Accord-

ingly, the indoor temperature will significantly increase, and customers comfort will be lost. DR

calling events can be seen as load shedding schemes but only on the TCL devices. The scope of the

ongoing research on TCLs is to maintain the power services without interruption while minimally
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adjusting the operating set-point within a pre-specified limits. These limits are determined by

customers’ preference to regulate the temperature in a given comfort zones. Accordingly, the TCLs

can be utilized and be more involved in the daily operational aspects while maintaining the power

service and customers satisfaction.

1.2 Related Work

Work in literature rely on investigating the capability of the underlying TCLs by modeling the

individual devices with a physical model. This model is called the Equivalent Thermal Parameter

(ETP) which describes the heat storage and dissipation processes involved in devices operation.

Heat storage comprises the heat injected from the heat pump and the heat loss caused by the

interaction with the surrounding environment. The dynamics of an individual device constitutes a

hybrid non-linear system. i.e., the temperature of the controlled mass is modeled as a continuous

variable, while the status of the device is modeled as a discrete variable [22],[23]. Therefore,

dealing with such large scale non-linear systems for online applications such as prediction and

control could lead to computationally intensive tasks. For these reasons, representing the TCLs

requires developing an aggregate model able to describe the operation of all devices in a single

computationally tractable model. Moreover, the aggregate model must accurately preserve devices

critical information which will be used in the control applications such as the inside temperature

dynamics and the total power consumption.

The early work on aggregating the TCLs are not mainly interested in DR control and adjusting

the aggregated power. Instead, the aggregated models are developed to predict the the cold-load

pickup events experienced by the feeders after prolonged service interruptions. Power outages cause

depleting the TCLs internal thermal storage. Therefore, when the power service is restored, devices

will be forced by their local thermostats to work simultaneously to bring the deteriorated temper-

ature back to the set-point. This action causes the aggregated power to return to a much higher

demand than the value before the outage. In addition, large number of devices stay synchronized



www.manaraa.com

6

together and for relatively long time periods causing the aggregated power to have an oscillatory

profile [24].

The first aggregated TCL model proposed for studying the cold-load pick-up events is presented

in [25],[26]. In this work, the analogy of the stochastic diffusion process is used to describe the

evolution of the probability density function (PDF) for both the ON and OFF state devices. The

resulting system is described by two stochastic partial differential equations (Fokker-Planck equa-

tions) coupled at their boundaries. The model is designed and developed to capture the evolution

of homogeneous TCL devices. Homogeneous TCL system refer to the case when all devices share

identical set of parameters, in contrast to the heterogeneous system, where each device has its

own distinct set of parameters. The homogeneous systems is considered in literature as a simpli-

fying assumption since heterogeneity complicates deriving the aggregated model. The authors in

[25],[26] have shown that the developed model captures the behavior of the homogeneous system.

However, an analytical closed form solution is hard to obtain. In addition, the numerical solution

of the resulting model requires discretizing the state and time. Therefore, the accuracy obtained by

considering the continuous-state, continuous-time states will be lost while obtaining the numerical

solution results.

The authors in [27],[28] have simplified the Fokker-Plank equations by considering the discrete-

time, discrete-state, modeling approach. This simplification add a great advantage in transforming

the evolution of the coupled probability density functions into a Markov chain. The authors have

shown that the Markov chain system accurately captures the homogeneous TCLs behavior and the

analytical solution of the model parameter can be easily obtained.

The potential of using the TCLs in DR control applications is investigated in [29],[30]. The

System identification techniques of ARX and ARMAX are used to inform about a linear model

that links the set-point changes with the aggregated power variations. In this work, 10,000 air-

conditioning load are utilized to minimize the variability of wind power output by providing load-

following reserves. The developed reduced order model does not provide sufficient information

about the behavior of the underlying devices, i.e., devices are seen as a black box. This short-
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coming prevents determining the effects of the control actions on devices’ distribution and obscure

knowing their inside temperature state. Perturbations to the operating Set-point are obtained by

implementing the minimum variance control law and the aggregated power in general shows a high

level of flexibility.

The set-point control adopted in the previous work is restricted to small magnitudes, i.e., less

than the dead-band length, while the resulting optimal set-point adjustment shows high-level of

variability. The variations in the set-point are used as a tool to turn ON or OFF certain number

of devices as dictated by the desired power trajectories. Accordingly, the set-point perturbation is

used to manipulate the percentage of the ON-state devices by switching them ON or OFF. Thus,

the set-point control is not used to store or extract thermal energy. This control methodology leads

to high switching control actions which could be beyond device’s capabilities.

The principles of state queuing theory is implemented in [31] to develop an aggregated model

for water heater loads. The model is developed to study the impact of dynamic pricing demand

respons programs in modifying the load profile of water heater loads. The state queuing modeling

approach holds similar characteristics as the Markov chain abstraction method. i.e., both of the

models divide the ON and OFF state devices in the discrete-state and discrete-time settings. The

resulting system matrix is in the form of transition probabilities between the discrete temperature

states. The state queuing model is developed for homogeneous water heaters while a comprehensive

sensitivity analysis on parameter uncertainty is performed.

The authors in [32] develop a new aggregated model for Homogeneous TCLs. A linearized

model of the aggregated response is derived using Laplace transformation, and a linear quadratic

regulator is used to adjust the temperature set-point. The obtained aggregated model in frequency

domain is rather complex and is hard to obtain the inverse Laplace transform. Therefore, the

authors use computer software (MATHEMATICA) to expand the model expression in the frequency

domain and obtain a closed form solution of the linearized system. The obtained model has similar

disadvantages as the one developed in [29]. i.e., both models regard the TCL devices as a black

box and devices information are obscured.
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The direct ON/OFF switching control is first introduced by the authors in [33],[34],[35], [36].

The authors have utilized the Markov chain abstraction method developed in [27] to implement

the ON/OFF switching control and modify the TCLs’ aggregated power. The modeling approach

is extended for heterogeneous group of TCLs and an analytical derivation of the Markov transition

probability matrix is provided. However, devices have limited heterogeneity level. i.e., system is

heterogeneous in thermal capacitance but homogeneous with respect to rated power and thermal

resistance.

The work in [36] have shown that the homogeneous TCLs experience undamped oscillations and

decays while increasing the heterogeneity level. From Markov chain modeling perspectives, it has

been shown that there is a negative correlation between the number of states and the oscillation

damping. Therefore, a large number of states is considered for modeling the homogeneous system

and a small number of states is adopted for the heterogeneous system. i.e., 300-states is chosen to

provide a non-decaying oscillation for the homogeneous system, and three models with 40,60 and

80 states are selected for modeling the heterogeneous system. The adopted ON/OFF switching

control shows high flexibility in modifying the aggregated power. However, similar to the set-

point perturbation control, this technique impose high switching actions on devices which could be

beyond device’s capabilities.

The authors in [37],[38] have started from the coupled Fokker-Plank equations developed in [25]

to build an aggregated model based on the transport load modeling theory. The finite-difference

approximation is used to develop a discrete-time, discrete-state, transport model which has similar

structure and characteristics as the Markov chain. The model is used for homogeneous TCL

system and concluded that increasing the number of the states will improve the model accuracy.

Large number of states gives the system the non-decaying nature which is similar to the actual

homogeneous system performance (the same conclusion is drawn in the previous work). It has been

shown that integrating the set-point control makes the system bi-linear in the state and the control

variables. Therefore, a non-linear control method of sliding mode controller that is guaranteed

Lyapunov stable has been utilized to provide the load following reserves.
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A new modeling approach is proposed in [39]. The authors consider a second-order dynamical

model for single TCL devices. These models account for not only the variations in the inside air-

temperature, but also captures the temperature of the internal mass. i.e., the average temperature

of furniture, walls, carpet, etc. In this work, multiple groups of homogeneous systems are considered

to represent the devices heterogeneity and the ON/OFF switching control is utilized to modify the

aggregated power consumption. The paper highlights the effects of the resulting switching actions

on devices’ physical capabilities and proposes a control algorithm to avoid the frequent switching

actions on single devices. However, such control restrictions will highly affect the aggregated power

flexibility. Conservative control actions i.e, devices should operate as the nominal charging and

discharging operating cycles, will leave the devices non-responsive.

The formal Markov chain abstraction method is initially introduced in [40] and further described

in [41], [42], and [43]. The method is used to derive an analytic error bounds for the resulting

models. Markov chains are represented in the form of finite-space stochastic dynamical system to

improve the accuracy of modeling the homogeneous TCL system. The work is extended for the

heterogeneous TCLs by clustering the system into many homogeneous groups. It has been shown

that the stochastic Markov chain model improves the performance of the Markov model and better

approximate the TCLs behavior than the deterministic version. The set-point control variation is

used in this paper to turn devices ON or OFF to provide load-following reserves. However, the

set-point control is similar to the one proposed in [29]. i.e., small set-point adjustments force the

devices to turn ON or OFF.

The authors in [44] first propose a non-uniform state transition bin structure to improve the

accuracy of the predictions. The advantage of this modeling framework is that the non-uniform

states’ length can provide accurate results with fewer number of states. This improvement has a

good practical implications since it does not require the thermostats to provide a high resolution

temperature data to fit the high-state models. The direct ON/OFF switching control is used to

provide load-following reserves. The effects of the resulting control actions on devices operation

is highlighted in this work. Devices’ short cycling protection is implemented using a randomized
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priority control strategy to help reducing devices’ wear and tear. The authors proposes another

control algorithm in [45]-[47] for the same purposes (minimizing the short cycling) by introducing

the priority stack algorithm. In addition, the work proposes new methodology to quantify the

devices’ aggregate flexibility by modeling the TCLs as stochastic battery with dissipation. The

power limits of the battery and energy content are characterized as a function of the set-point and

the ambient temperature. The direct ON/OFF switching control is the main control strategy in

their work.

The work in [48],[49] proposes a safe control protocol to provide services to the grid with minimal

subsequent oscillations. The work involves adopting new intelligent thermostat with timers and

memory. Devices are instructed to turn OFF or ON for a given amount of time. This work is based

on Monte Carlo simulation of devices and does not depend on an aggregate model. The control

methodology is suitable for generate sharp power pulses but specific reference power signal is hard

to obtain.

The authors in [50] adopt the transport TCL model previously developed in [38] for homoge-

neous TCLs and extend the work to the heterogeneous TCLs. In this work, the heterogeneous

system is divided into multiple clusters such that the devices in each cluster represent an indepen-

dent homogeneous system. The temperature set-point control is used in this work to modify the

aggregated power consumption as in the original work [38].

The TCL devices can also be controlled in a model-free approach. Such control methodology

handle the TCLs directly without developing an aggregate model. Extracting power services are

achieved by implementing sequential decision-making problems subjected to the TCLs’ dynamics.

The solution of such methods requires adopting an improved solution algorithm. For instance,

the work in [51],[52] propose a generalized battery model solved by a priority-stack-based control.

The authors in [54]-[56] use a three-step control approach initially developed in [53] for plug-in

hybrid vehicles to control a heterogeneous cluster of TCLs. The developed method utilizes the

reinforcement learning to improve the scalability of the problem. Other approaches also consider

controlling the TCLs in distributed architectures [57]-[59] to enhance the coordination between
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devices and improve the solution algorithms. The main shortcoming of model-free approaches is

scalability. Designing control problems subjected to devices non-linear dynamics will make it even

harder to solve the problem for more than 1,000 devices. Model-free approaches are entirely based

on direct ON/OFF switching control.

1.2.1 Literature Highlights

Modeling Aspects

Various statistical models are proposed in literature to describe the evolution of the ON and

OFF-state devices with different state and time settings (continuous or discrete) including: the

coupled Fokker-Planck equations, Markov chains, state-bin transition models, state-queuing models,

and transport models. All of the statistical models share the same structure, performance, and

capability. Other modeling approaches such as the system identification techniques and the Laplace

transformation are also used to build an aggregate model. However, the resulting system is in the

form of input/output model which only captures the changes in the aggregated power based on

the set-point variations. The obtained reduced order model or transfer function obscure devices’

information and the effect of the control actions can not be obtained. The major conclusions about

the aggregation and TCLs’ modeling are as follows:

• Statistical models are derived and identified for homogeneous TCLs. The parameters of the

discrete-state models are solved analytically, while the continuous-state models are solved

numerically.

• The models are derived and identified at fixed operating temperature set-point. Therefore,

the models’ parameters will be valid to describe the dynamics only within this temperature

range. i.e., the range is defined by the set-point and the dead-band length.

• The performance of the statistical models have shown high levels of accuracy in modeling the

homogeneous systems. Where smaller discretization steps (Increasing the number of states)

further improves the modeling accuracy.
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• Parameters heterogeneity complicates deriving a single statistical model to describe the entire

TCLs population.

• Parameters heterogeneity is resolved by approximating the heterogeneous system into many

homogeneous clusters. The optimal number of clusters is a trade-off between the modeling

accuracy and the computational tractability.

• Model-free approaches are prone to the scalability issues. The control algorithm become

highly computationally intensive for large number of devices.

Control Aspects

Most of the work proposed in literature focus on demonstrating the capability of modifying the

TCLs’ aggregated power to provide fast load-following reserves. The aggregated power consumption

at any given time is proportion to the number of the ON-state devices. Therefore, modifying the

aggregated power requires regulating the number of devices in the ON-state such that the total

power matches the desired value. This is done in literature with two main control techniques.

• Direct ON/OFF switching control: Devices are directly toggled between the ON and OFF

states. i.e., devices are controlled remotely to change the current operating cycle either from

ON to OFF (load reduction) or from OFF to ON (load increase).

• Temperature set-point control: This control technique requires estimating the set-point mag-

nitude change such that a certain number of devices will be switched ON or OFF. The change

magnitude is limited to small variations. i.e., much smaller than the dead-band length. This

control limitation is considered for two main reasons. First, the models will not be valid to

describe the TCLs dynamics since it is designed and identified at fixed set-point. Second, the

aggregated power stability will be lost (large oscillations). Accordingly, the set-point control

is used as a tool to switch devices either ON or OFF and the inside temperature of all devices

is kept around the set-point.

Both of the control techniques are similar, in essence, they rely on frequently switching the

devices between the ON and OFF states and the average temperature inside houses is kept
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as specified by the set-point. Accordingly, to extract certain services both of the control

techniques impose high switching rates and short cycling on devices. The resulting control

action could be way beyond the physical capability of the devices.

1.3 Proposed Approach and Contributions

Work Overview

In our work, a novel modeling approach is developed to capture the TCLs dynamics under

various operating temperature set-points. The model is derived as an extension to the Markov

chains developed in literature at a fixed temperature set-point. The new model is referred as the

Extended Markov Model (EMM). The EMM is considered as comprehensive framework which can

capture not only the steady-state dynamics but also the transient behavior in case of set-point

adjustments. The model is designed to describe the dynamics for small and large set-point changes

and in both directions. This modeling approach is proposed to minimize the switching actions on

the devices by relying on extracting or storing thermal energy rather than relying on their switching

capabilities.

The EMM is derived by restructuring and linear mapping of various Markov chains identified

at fixed set-points. The development of each Markov chain is performed using statistical learning

techniques. The learning process and its characteristics are described and evaluated for both the

homogeneous and the heterogeneous TCLs. Extensive sensitivity analysis revealed that modeling

the heterogeneous TCL system is subjected to the bias-variance trade-off and there is a specific

Markov design to approximate the heterogeneous TCL system. sensitivity analysis is conducted to

find the best single Markov chain to approximate the heterogeneous system.

We have found that the heterogeneous parameters previously defined in literature is limited.

More comprehensive and general heterogeneous parameters are considered in our analysis. However,

for such situations single Markov chains will have larger errors. Therefore, the K-mean clustering is

used to divide the comprehensive heterogeneous system into multiple semi-homogeneous clusters.
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Dispatching the TCL devices with new thermal energy level forces them to operate in a syn-

chronized patterns and for relatively long time periods. This synchronization leads to large power

oscillation for small set-point adjustments. While for the large changes, devices are forced to be

either OFF with zero power consumption or ON with maximum power consumption. To avoid

these situations, a model predictive controller with ON/OFF switching capability is proposed to

determine the optimal flow toward the new temperature set-point and curb down the oscillations.

Therefore, the control framework adopted in our work is hybrid. i.e., the set-point adjustments

and the ON/OFF switching control.

Major contributions

• A comprehensive modeling framework is developed to capture the TCLs dynamics under

various operating temperature set-points. The model is able to describe the transient and

steady state behavior associated with small and large set-point adjustments and in both

directions.

• The Model Predictive Control (MPC) framework is proposed to resolve the problems asso-

ciated with adjusting the temperature set-point. The MPC utilizes the ON/OFF switching

capability to determine the optimal sequential set-point control law and curb down the power

oscillations.

• Demand Response dispatching framework is proposed for utilizing the TCLs flexibility in three

main ancillary services; Namely, spinning reserves, load reduction, and load shifting. The

DR programs are design and integrated to the Unit commitment problem with appropriate

constraints to allow devices charging and discharging without violating customers’ comfort.
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CHAPTER 2. THERMOSTATICALLY CONTROLLED LOADS

(HOMOGENEOUS V.S. HETEROGENEOUS)

2.1 Introduction and Overview

This chapter introduces the Equivalent Thermal Parameter (ETP) model of individual Ther-

mostatically Controlled Load (TCL) and describes the basic set of parameters used to represent its

physical operation. A large group of TCLs is considered in this chapter where each device is rep-

resented by an independent ETP model. The aggregate behavior of all TCLs at fixed temperature

set-point is described and analyzed. Two groups of devices are considered. First, the homogeneous

TCLs, which refers to the situation where all devices under control have identical thermal param-

eters and power ratings. While the second case, is the heterogeneous TCLs, which indicates the

case where each device in the group has distinct parameter values.

The sensitivity analysis is conducted on the aggregated power consumption and the distribution

of the devices when both of the TCLs groups are subjected to temperature set-point adjustment.

It has been shown that the aggregated power of the homogeneous system shows an un-damped

oscillatory profile, in contrast to the heterogeneous case, where the power oscillations converges

to a steady-state value. The last section discuses a control methodology to curb down the power

oscillation observed in the homogeneous TCL devices. The methodology requires adopting an

intelligent thermostat which is able to assign new set-point and the dead-band limits as control

variables.

2.2 Equivalent Thermal Parameter Model

This section discusses the Equivalent Thermal Parameter Model (ETP) of a single TCL device.

The ETP model described in this section illustrates the operation of cooling TCL devices, more

specifically, air-conditioning loads. In general, the ETP model describes how the temperature
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trajectories for a given device evolve with time during the cooling and the heating cycles. In

discrete time settings, the ETP is shown in (2.1)-(2.2) [27]. This kind of mathematical models

is described by a hybrid-state system, it comprises both continuous and discrete variables. The

continuous state Ti(k) ; reflects the air temperature inside the house i at the time instant k, while

the binary state qi(k); represents the operational status of this device. i.e., being ON (qi(k) = 1),

or OFF (qi(k) = 0). The actual time can be found based on the discretization time-step h.

The temperature set-point Ts, represents the regulating temperature inside the house, while the

actual switching limits are specified by bang-bang or a hysteresis controller with a dead-band of

length D. The air-conditioning device will be switched ON when the inside temperature increases

to the upper dead-band limit Ts +D/2, and will be switched OFF when the inside temperature is

cooled to Ts −D/2.

Ti(k + 1) = e

(
−h/RiCi

)
Ti(k) +

(
1− e

(
−h/RiCi

))(
Ta − qi(k)RiSi

)
(2.1)

qi(k + 1) =


1 Ti(k) > Ts +

(
D/2

)
0 Ti(k) < Ts −

(
D/2

)
qi(k) otherwise

 . (2.2)

The ETP model considers two simplifying assumptions. First, the effect of noise processes such

as sun exposure and door opening are insignificant to have major effects on the air temperature

trajectories. Thus, devices’ internal temperature is affected by the heat injected from device’s

rating power Si, and the heat dissipated to the outside environment. The heat dissipation process

is determined by the thermal characteristics of the buildings. i.e., the thermal resistance Ri, and

the thermal capacitance Ci. In the second assumption, the outside temperature Ta is considered

as a time-invariant factor. Following these two assumptions, the power consumption of individual

device form a periodic square waveform, and the inside temperature trajectories are regulated as

specified by the set-point and the dead-band length.

As an illustration, Fig. 2.1 presents the temperature trajectories and power consumption of

three identical air-conditioning devices with parameter values as listed in Table. 2.1. The devices
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start from different initial conditions. i.e., the initial inside temperature Ti(k = 0), and the initial

status of the device, being ON or OFF qi(k = 0).

Table 2.1 Air-conditioning ETP parameters.

Parameter Value

Ts, Temperature set-point 20 ◦C

D, Thermostat dead-band 1 ◦C

S, Power Rating 5.6 kw

R, Thermal resistance 2 ◦C/kw

C, Thermal capacitance 2 kwh/◦C

Ta, Ambient temperature 32 ◦C
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Figure 2.1 Top: Temperature trajectories. Bottom: Power consumption. Temperature

and power consumption (graphs are color coded).

2.3 Homogeneous TCLs Performance

The analysis in this section considers a homogeneous group of TCLs represented by air-conditioning

loads. All devices share identical set of parameters as listed in Table. 2.1. In some situations, de-

vices might have high level of similarity. For instance, if the TCLs are representing a group of

refrigerators in a residential area, the values of devices’ thermal resistance and thermal capacitance
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might be close. The parameters in this case will follow relatively narrow distributions. In this

section, we assume the extreme situation, where all the devices are identical. It is also assumed

that all devices are regulated at a common temperature set-point and is remotely accessible by a

load-aggregator through a direct load control DR program.

This analysis considers a group of 10,000 device and initially operated at a fixed set-point of 20

◦C. The dynamics of each device is governed by Eqs. (2.1)-(2.2) and their parameter values are listed

in Table 2.1. Initially, the temperature inside houses is assumed to be uniformly distributed over

the dead-band, while their initial status i.e., being ON or OFF, follows a Bernoulli distribution with

success probability equal to the ON time duty-cycle (Eq.(2.5)). These initial conditions are required

to approximate devices’ steady-state distribution. Otherwise, the aggregated power consumption of

all devices will have oscillations. The ON and OFF time periods, Eq.(2.3) and Eq.(2.4) respectively,

can be solved for the dynamical system given that the initial and final temperature states are the

upper and lower dead-band limits. The aggregated power Pagr can be obtained by adding up the

power consumption time-series of individual devices as given in Eq.(2.6), where Nd is the total

number of the air-conditioning devices.

ton = RiCi ln
{SiRi − Ta + Ts + 0.5D

SiRi − Ta + Ts − 0.5D

}
' 15min (2.3)

toff = RiCi ln
{Ta − Ts + 0.5D

Ta − Ts − 0.5D

}
' 20min (2.4)

Pon =
ton

ton + toff
(2.5)

Pagr(k) =

Nd∑
i=1

qi(k)Si (2.6)

The simulation results for set-point change are presented in Fig. 2.2. Initially, the aggregated

power consumption is almost a constant value following the initial probability assumptions. First,

we consider extracting instantaneous demand reductions by increasing the set-point by 0.3 ◦C
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at t = 5h (The set-point adjustment signal is shown in black in the bottom graph). Immediate

load reduction is achieved. However, the control action is followed by a large undamped power

oscillations. Although this temperature adjustment is small, it is considered as a large disturbance

to the system and make it unstable.

For a better illustration, consider the distribution of devices before the control action as shown

in Fig. 2.3. For simplicity, assume that the number of the ON and OFF state devices are equal.

knowing that the upper and lower dead-band limits move along with the set-point adjustments, a

small set-point increase moves the lower limit upward to a new value represented by T1. Accordingly,

all ON state devices whose temperature state fall between the old and the new lower limits will be

switched OFF by their local thermostats (their inside temperature is less than the new dead-band

limit). The number of devices turned OFF is proportional to the magnitude of the applied control

signal. These switched devices will stay synchronized with others who are originally in the OFF-

state since they have identical thermal characteristics. This synchronization causes large power

oscillation as clearly seen in the top graph of Fig. 2.2. The synchronization is more obvious in the

bottom graph. The temperature trajectories of these random houses come closer together after the

set-point adjustment.

In the second case, we consider extracting instantaneous load increase by decreasing the set-

point back to its original state at t = 15h , this set-point change causes additional devices to be

synchronized together, and thus the amount of power oscillation is also increased. The opposite

interpretation apply in this case, where decreasing the set-point forces all OFF devices whose

temperature state fall between the old and the new dead-band limit (T2) to switch ON and stay

synchronized with the ON state devices.

The step adjustments completely deform the steady-state Probability Distribution Function

(PDF) (shown in Fig. 2.4). This PDF represents only the ON state devices. Initially devices are

uniformly distributed over the dead band (19.5 ≤ T ≤ 20.5). The control action cause spikes and

gaps while PDF evolves with time which represents devices’ synchronization. After the second

control action, the gap is increased which means devices are more synchronized. For Multiple set-
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Figure 2.2 Set-point adjustment of 10,000 homogeneous air-conditioning device. Top: Ag-

gregated power. Bottom: Temperature trajectories of ten houses.

point changes, devices will be forced eventually to converge to a dirac delta function, hence the

aggregated power consumption waveform will become similar to the operation of a single device,

i.e., a square waveform. In summery, temperature set-point adjustments for homogeneous TCL

systems force a large number of devices to operate in a synchronized fashion, devices stay in sync

since they have identical parameters. This trend is reflected in the aggregated power behavior as a

large un-damped oscillations.

2.4 Heterogeneous TCLs Performance

This section discusses the effect of varying the thermal parameters and the energy transfer

rates among devices. Heterogeneity has a great positive effect in improving the dynamics of the

aggregated power following set-point adjustments. Heterogeneous TCLs implies that each device

has distinct charging and discharging time-constants. Therefore, prolonged concurrent operations

are less likely to occur, and the aggregated power consumption experience a damped oscillation.
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Figure 2.3 Temperature and functional states of a random sample. Blue: heating cycle

moving upward. Pink: cooling cycle moving downward.

The same number of devices is considered in this case. However, the parameter values follow

Gaussian distributions with mean values equal to those given in Table 2.1, and a standard deviation

equal to 0.1 of their means. Heterogeneity is considered in thermal resistance, thermal capacitance,

and the devices ratings.

The same control actions applied to the homogeneous system is adopted here for the hetero-

geneous case. Fig. 2.5 illustrates how the total power consumption oscillatory transients appeared

in the homogeneous TCLs has eventually suppressed for the heterogeneous system, but with a

relatively long time period until it completely converges to a steady-state value. Temperature tra-

jectories of the random houses show that, following both of the set-point changes, temperature

trajectories come closer (synchronized) but then retrieve the diverse situation (not synchronized).

The evolution of the ON-state PDF (shown in Fig. 2.6) requires a relatively long time to

converges a new steady-state condition and be ready for the next control actions.

2.5 Damping Power Oscillation in TCLs.

This section describes a control methodology that maintain the stability of the aggregated

power consumption by curbing down the oscillations. The new control architecture can be utilized
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Figure 2.4 The evolution of the ON-state PDF following the set-point adjustment.

with both homogeneous and heterogeneous loads. Actual devices in the real life are heterogeneous.

However, we will start from the worst case situation where all devices are homogeneous.

Thermal mass characteristics and power rating variations help creating distinct heat charging

and discharging rates. Consequently, after set-point changes, synchronous operations are less prob-

able. For a group of homogeneous TCLs, creating distinct charging and discharging rates can be

forced by imposing little variation in the deadband size across the devices. To demonstrate this

capability, we assume that the devices are equipped with an intelligent thermostat which is able to

provide the set-point as well as devices’ dead-band as accessible control variables. In our simulation,

we consider that the new assigned upper and lower dead band length are randomly sampled from

Gaussian distribution.

To test the control methodology, we considered extracting the maximum available power for a

short time duration. This can be done by applying a global set-point control signal. The magnitude

of the applied control is equal to twice the length of the deadband, a step-increase of 2◦C implies

that all the devices in the control group will be switched off. Similarly, for a step-decrease of 2◦C all

the devices will be switched ON. Fig. 2.7 illustrates the results where a maximum demand reduction

is achieved and the new thermostat able to curb the oscillation. Similar characteristics govern the
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Figure 2.5 Set-point adjustment of 10,000 heterogeneous air-conditioning device. Top: Ag-

gregated power consumption. Bottom: Temperature trajectories of ten houses.

2◦C set-point decrease. The effect of dead-band variation can be clearly seen in Fig. 2.8. Sensitivity

analysis has shown that in order to completely curbing down the oscillation, it is required to assign

a relatively narrow distribution to the new dead-band variations.

Finally, if we consider that demand changes are based on a time varying control signal, the new

control methodology improves the aggregated response compared to the case when conventional

thermostat settings are considered (See Fig. 2.9). The aggregated power consumption and the

demand response control signal are highly correlated and suitable for applying open-loop control

system. The limitation of this control architecture is that the stability of the aggregated power will

be guaranteed only if we shortening the dead-band length. As consequences, devices will be forced

to operate in much shorter duty-cycle with high switching rate.
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Figure 2.6 The evolution of heterogeneous TCLs (ON-state PDF) following a step-change.

2.6 Conclusion

The chapter shows that manipulating the temperature set-point of the TCLs forces a large

number of devices to operate in a synchronized pattern. This synchronization causes oscillations

in the aggregated power which may lead to serious stability issues. The oscillation is undamped

in case of homogeneous loads, while experience a slow damping rate in the heterogeneous case.

The variations in the thermal mass characteristics and power rating for heterogeneous TCLs help

creating distinct heat charging and discharging rates for each device. such that, the devices will

not be synchronized for long time-intervals and eventually power oscillation is suppressed.

In both cases, set-point adjustment causes oscillation. Therefore, additional control techniques

are required to prevent this oscillation and guarantee a fast convergence to the new steady-state

value. The chapter introduces an intelligent thermostat for theses purposes. The new thermostat is

able to adjust the dead-band limits along with the operating set-point so that each device will have

distinct charging and discharging rates. However, maintaining the stability of the system requires

forcing the devices to operate with much shorter duty cycle and increasing their switching rates.



www.manaraa.com

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
ow

er
 (K

W
)

#105

0

1

2

3

4

5

6

7
Total power

Time(Hours)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
el

si
us

19

20

21

22

23
Tempreture Tragectrories and DR Control Signal

Figure 2.7 Advanced thermostat capabilities. Top: Aggregated power consumption. Bot-

tom: Temperature trajectories of ten houses.

This highlights the need of developing an aggregate model to simplify the large-scale non-linear

models into a more computationally tractable single model. This aggregate model will be used to

derive an optimal control actions to achieve the services without violating the physical limitation

of devices and the comfort of customers. This will be discussed in details in the next chapter.
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Figure 2.8 ON-state PDF evolution with the new control features.
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CHAPTER 3. MARKOV CHAIN ABSTRACTION FOR AGGREGATING

THE TCLS

3.1 Introduction and Overview

This chapter describes the fundamental aggregating methodology of a group of Thermostatically

Controlled Loads (TCLs) at a fixed temperature set-point. The aggregated model is in the form of

discrete-time, discrete-state Markov chain, which describes the flow and the transition probabilities

of devices along the dead-band. This modeling framework can transfer the large-scale non-linear

ETP models to a single model in linear systems settings. Markov chains will be used as the

basis for predicting and controlling the aggregated power consumption of the TCLs in the online

applications. The details of this analogy is described in Section 3.2.

Markov chains are developed in this chapter using statistical learning techniques of hidden

Markov model analysis. The training data-sets are obtained using Monte Carlo simulation of indi-

vidual ETP models. The data sets are used to develop various Markov chains with different number

of states. Comprehensive sensitivity analysis is conducted in section 3.3 pertaining to Markov model

performance against the number of the states and various initial conditions. Conclusions are drawn

regarding the Markov model performance and accuracy levels for both the homogeneous and the

heterogeneous TCLs. The eigenvalue analysis of the resulting transition probability Matrix is used

in Section 3.5 to derive devices’ distribution during the steady-state conditions. Finally, Markov

models at different temperature set-points are derived in Section 3.6, and the steady-state power

is evaluated using the eigenvalue analysis.

3.2 Markov chain Representation

This section discusses the details of developing a representative Markov model for a large group

of air-conditioning loads. The dynamics of each individual device are described by (2.1-2.2), where
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devices are regulated at a common temperature set-point. A common practice in dealing with

hybrid-state models is to discretize the continuous state space, i.e., the temperature space, into a

number of equal intervals. In each interval, devices could be either ON or OFF, so that the intervals

are grouped into two sequences of states as shown in Fig. 3.1. The nature of the temperature space

of being bounded by a hysteresis loop makes the Markov chain abstraction a good candidate for

representing the system dynamics as a linear system (3.1).

If we consider discretizing the temperature space into (N/2) intervals, then the Markov chain

has a total number of (N) states, such that device could be either in the OFF states (1 − N/2)

, or in the ON states (N/2 + 1 − N). The system-matrix A defines the transition probability

between the states themselves or with adjacent states as demonstrated in Fig. 3.1. The aggregated

power drawn from all devices can be estimated by adding up the average power consumption of

all devices in the ON states as defined in (3.2-3.3). Where η is the average efficiency, and S̄ is the

average power rating [27],[33]. Usually in the probability theory, Markov states are defined as the

probability distribution and how these distribution evolves with time. In our work, we multiply

the distribution with the total number of devices, such that the physical meaning of the markov

states become the number of devices at each temperature discretization.

x(k + 1) = Ax(k), A ∈ RN×N , x ∈ RN (3.1)

Pagg(k) = Cx(k), C ∈ R1×N (3.2)

C = (S̄/η)[0(1×N/2) 1(1×N/2)] (3.3)

A conceptual overview of the Markov model development process is shown in Fig. 3.2. The

process involves deriving the transition probabilities by performing a training process over a set of

simulated data, which is obtained using Monte Carlo simulations of the ETP models (steps 1-2).

The simulated data is in the form of inside temperature and power consumption time-series data for
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Figure 3.1 Markov chain representation for aggregated TCLs.

individual devices (step 3). For a given Markov model design, the temperature space is discretized

with an increment value equal to ∆x = 2D/N , which is used to assign appropriate state number for

each temperature interval (Step 4). Markov state definitions and the link with the corresponding

temperature intervals are shown in (3.4) and (3.5). The temperature time-series is then compared

with the power consumption time-series such that the ON and OFF temperature intervals can be

identified (step 5). As a result, the temperature intervals can be transformed into a sequence of

Markov states as specified in (3.4- 3.5) (step-6).

xoffm := Ts −
D

2
+ (m− 1)∆x < Tm 6 Ts −

D

2
+m∆x (3.4)

m ∈ [1, ..., N/2]

xonn := Ts +
D

2
− (n− N

2
)∆x < Tn 6 Ts +

D

2
− (n− N

2
− 1)∆x (3.5)

n ∈ [(N/2) + 1, ..., N ]

Representing the inside temperature as Markov state sequence is considered the major part

of the learning process. The next step involves constructing states counters to measure the total

number of visits in which the device remained hold or made a transition to another state. Thus,
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Figure 3.2 Markov chain training Process.

the transition probability between any two particular states can be found as shown in (3.6). The

counter cd(i,j) measures the total number of visits that have been made by device d from state j to

state i in one time step. The counter is then normalized over the total number of visits made to

state i to have a probability measure (step 7). Finally, the average probability across all devices

Nd is found as described in (3.7).

As in linear-systems formulation, the transition probabilities are structured such that the A

matrix defines a column stochastic matrix (step 8); i.e., the summation of all probabilities of any

particular state must add to one. For suitable discretization time selection (h), the state sequence

is less likely to bypass adjacent states and the A matrix will have a general transfer probability

structure as shown in Eq. 3.8.

P d
(i,j) = P d(xi | xj) =

cd(i,j)∑N
n=1 c

d
(i,n)

d ∈ 1...Nd (3.6)

P(i,j) =

∑Nd
d=1 P

d
(i,j)

Nd
(3.7)
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A =



P(1,1) 0 0 . . . P(1,N)

P(2,1) P(2,2) 0 . . . 0

0 P(3,2) P(3,3) . . . 0

...
...

...
. . .

...

0 0 0 . . . P(N,N)


(3.8)

The training process is performed for a 10,000 air-conditioning devices with two cases. First,

all devices are assumed homogeneous, while in the second case heterogeneity is considered. The

training data in both systems are generated from an extreme initial condition which assumes that

all devices are initially OFF and operating at the same initial temperature of 20 ◦C. The simulation

final time is set for 24 hours with time discretization of 1 second. Accordingly, the training data

sets are statistically significant and each Markov state has a large number of visits to derive reliable

conclusions about the actual transition probabilities.

3.2.1 Markov Models for Homogeneous system.

The learning process is initially performed for homogeneous system. The actual power con-

sumption of all devices obtained from simulating the ETP models is shown in black in Fig. 3.3. As

an extreme initial condition, all devices are selected to be in the OFF state. This assumption leads

to a large oscillation in the aggregated power due to the synchronous operation of the devices. The

time-series of the aggregated power experience a non-decaying oscillation due to devices homogene-

ity. Fig. 3.3 also illustrates the performance of different Markov chains initialized with the same

conditions. In the training process, homogeneous loads are subjected to the bias error caused by the

temperature discretization. As a result, Markov models with low number of states underestimate

the actual system behavior (Markov chains converge to a steady-state value while the actual system

is oscillating). Accordingly, increasing the number of states in the learning algorithm allows the

Markov models to minimize this error and eventually improves the model predictions (see Fig. 3.3).

This results support the finding in literature [34],[38], where it has been shown that increasing the

number of states improves the overall model accuracy in case of homogeneous TCLs.
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Figure 3.3 Markov chian training for homogeneous TCL system. Black: actual ETP sim-

ulation. Red: Markov model.

3.2.2 Markov Models for Heterogeneous system.

In contrast to homogeneous systems, diversity in devices’ characteristics of heterogeneous sys-

tems prevents the oscillations, since each device operates at a different frequency and phase. As a

result, the aggregated power converges to its steady-state condition with a convergence rate based

on devices’ heterogeneity. Similar illustration is also presented in this section. Fig. 3.4 demon-

strates the ETP simulation in black and compare the performance of different Markov chins shown

in red. Small number of states underestimate the transient behavior of the actual system but still

can predict its steady-state. Increasing the number of states improves the Markov chain accuracy.

However, after a specific number of states, the Markov chain starts deviating from the actual system.

If we consider the same number of states used to model the homogeneous system i.e., 300 states,

the resulting Markov chain is not capturing the actual heterogeneous system. instead, the resulting

Markov chain captures the equivalent homogeneous system i.e., all devices have parameters at the

mean values. (see Fig. 3.4).
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It has been shown that modeling the homogeneous system is subjected to the bias error caused

by the temperature discretization. However, for the heterogeneous system there is another source

of error caused by the variance in the training data sets. This error is produced due to the different

realizations obtained from devices, since each device has distinct parameters. For such systems, in

order to minimize the variance error, the number of Markov chains must be increased along with

the number of states, such that the combined effect of all of the Markov chains provides similar

characteristics of the actual heterogeneous system. The optimal system representation from the

accuracy point of view is to increase the number of the Markov chains up to number of devices and

increase the number of states in each Markov chain. However, tractability will be lost with this

huge number of linear systems. In reality, the number of Markov chains should reflect the trade-off

between the computational efficiency, and acceptable accuracy levels.

Figure 3.4 Markov chian results for heterogeneous TCL system. Black: actual ETP sim-

ulation. Red: Markov model simulation.

Modeling the heterogeneous system with single Markov chain will have this limitation, where

both of errors can not be eliminated simultaneously. Single Markov chain is subjected to the bias-

variance trade-off [65], and there is a specific number of states that can minimally reduce both of
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the errors, but the performance of the system will not provide a perfect fit as demonstrated in the

homogeneous case. In order to determine this specific Markov design, a comprehensive sensitivity

analysis for the heterogeneous system is performed in the next section.

3.3 Sensitivity analysis of Heterogeneous system

The objective of this section is to evaluate the performance of the Markov chains against different

validation data to reveal the best design in handling both the temperature discretization error and

the variance error in the heterogeneous system. The training data set generated in the previous

section is used to train various Markov chains with different number of states. The modeling process

starts with two states and increases with an increment of 4 up to 200 states.

The validation data is obtained by running the ETP simulation with different initialization. In

total, new 11 initial conditions are used in this sensitivity analysis. initial conditions are classified

as the percentage of devices initially in the OFF state. For simplicity, the initial temperature state

is considered uniformly distributed over the dead-band. The simulation of the ETP models given

all initial conditions is presented in Fig. 3.5. Less oscillation is produced from initial conditions near

the steady-state value (the 50% and 60% OFF devices), compared to the extreme initial conditions

(0% and 100%). While it takes approximately three hours from all initial conditions to converge

to the steady-state.

All of the Markov models are simulated for the given initialization, and the obtained results are

compared to the actual system dynamics shown in Fig. 3.5. The Normalized Root Mean Square

Error (NRMSE) presented in equation (3.9) is used to quantify the overall model performance.

Where, Pss represents the steady-state power consumption, P (k) is the actual power obtained from

ETP models, P̄ (k) is the estimated power of any particular Markov model, and kf is the total

number of samples considered in the analysis.

NRMSE =
1

Pss

√∑kf
k=1(P (k)− P̄ (k))2

kf
(3.9)
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Figure 3.5 ETP simulation of all initial conditions (percentage of devices in OFF state).

The results of the analysis are shown in Fig. 3.6. Initially, the performance of the Markov chains

is compared in a relatively short-term scale in Fig. 3.6.a, i.e., first half-hour. It is clearly shown

that increasing the number of states improves the modeling accuracy similar to the homogeneous

case for this time-frame. This result is due to the fact that the variance in training data sets does

not have a major impact in the considered time-scale. The operation of the TCL devices involves

a relatively slow dynamics. Thus, the effect of devices’ heterogeneity can not be distinguished

in the short-term predictions. Therefore, modeling the heterogeneous devices can be seen as the

homogeneous case where only minimizing the bias error is the dominant factor. The effect of the

variance starts to take place after the first half-hour causing the aggregated power to converge to

the steady-state value.

If longer time-scales are considered, for instance, the first three hours, as shown in Fig. 3.6.b,

the effect of the variance in the training data sets becomes more dominant while the aggregated

power starts having less oscillation. Increasing number of states in this case will not conclude in a

promising results as in the homogeneous case, rather the error magnitudes start increasing for all

models larger than 40-states. Therefore, for long-term predictions a trade-off between minimizing

the bias and variance errors is required to find a good representative model that approximates the
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actual system behavior. As shown in Fig. 3.6.b, for this load heterogeneity, the 40-state model gives

the minimal error compared to the other Markov designs and for all of the initial conditions. The

performance of the 40-state model for one extreme initial condition is previously shown in Fig. 3.4.
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Figure 3.6 Markov model performance for various states and initial conditions.

3.4 Markov model sensitivity to simulation time-step

The development process of the Markov chains with 40-states requires that the training data

have a good time resolution, whether the training data sets are obtained from simulation or collected

from actual devices. Time resolutions more than 18 seconds does not yield representative models.

This can be shown in Fig. 3.7, which presents the effect of varying the discretization time-step on

the training process. Clearly, increasing the time-step causes the system to deviate from the actual

one. Moreover, models with more than 72 seconds do not even approximate the actual system

behavior.
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Figure 3.7 40-state Markov model training for various discretization time steps.

3.5 Eigenvalue Analysis of Markov Chain Models

The steady-state probability density functions for the OFF and ON devices have been derived

analytically for homogeneous TCL system in [25],[29],[32]. In this section, the eigenvalue analysis

of the Markov chains will be used to derive a representative distribution during the steady-state

for the heterogeneous loads. Markov chains are described by the transition probability matrix A

which constitutes a general stochastic matrix. Accordingly, the model eigenvalues are placed inside

the unit circle. However, there will be a dominant eigenvalue exists on its circumference and occurs

exactly at one. while all of the other eigenvalues have smaller real parts. Thus, this eigenvalue

is dominant and represents the steady-state mode of the system. As the number of the states

increases, the eigenvalues skewed farther to the left, causing larger complex conjugate values to

appear in the system (see the outer ellipse in Fig. 3.8 which represents the 200-states). As a result,

the system becomes more sensitive to perturbations and takes a longer time to converge. This is

also interpret into oscillations in the homogeneous system, where increasing the number of states

is essential to improve the modeling accuracy.

A detailed probability mass function during the steady-state condition can be found by de-

termining the right-eigenvector corresponding to the dominant eigenvalue at one (v∗). Such that
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Figure 3.8 Eigenvalues of all Markov models.

devices’ steady-state distribution (x∗), can be obtained as shown in (3.10), where Nd; represents

the total number of TCL devices. For the 10,000 heterogeneous TCLs considered in section. 2.4

and modeled using the 40-state Markov chain, the steady-state distribution is found using (3.10)

and illustrated in Table.3.1.

x∗i =
| v∗i |
‖v∗‖1

Nd (3.10)

Table 3.1 Steady-state distribution based on the eigenvalue analysis.

OFF States ON States

x∗i # x∗i # x∗i # x∗i #

1 323.14 11 281.77 21 249.77 31 214.71

2 270.94 12 282.19 22 208.56 32 215.70

3 272.05 13 283.48 23 209.41 33 216.09

4 273.04 14 284.77 24 210.15 34 216.93

5 274.38 15 285.79 25 210.84 35 217.64

6 275.11 16 287.16 26 211.39 36 218.21

7 276.55 17 288.33 27 212.07 37 219.08

8 277.61 18 289.68 28 212.93 38 219.78

9 278.71 19 290.97 29 213.43 39 220.48

10 279.99 20 291.84 30 214.12 40 221.01

OFF percentage 56.68% ON percentage 43.32%
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The distribution is numerically verified in Fig. 3.9. The ETP models are initializing with values

as specified in Table. 3.1. The performance is compared against the 100% OFF initial condition to

verify the results when all devices naturally converge to the steady state-value. The values listed

in the table are approximated to the nearest integer and considered uniformly distributed over the

corresponding temperature intervals defined in (3.4)-(3.5).
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Figure 3.9 ETP simulation based on the steady-state distribution.

3.6 Markov Model development at various temperature set-points

Markov chains are developed in the previous sections at a fixed operating set-point. Set-point

control will be used in our work to extract or store additional thermal energy in the TCL devices

based on specific comfort levels. Therefore, it is required to evaluate the steady-state power con-

sumption at various set-points to estimate the power capability of the devices. In this section, the

ETP simulation is evaluated at different set-point settings and the corresponding Markov chains

are developed accordingly. The steady-state power consumption is evaluated using both the ETP

simulation and the Markov chains eigenvalue analysis discussed in the previous section.

It is assumed that the customers allow load-aggregator to modify their temperature set-point

over a relatively wide range, such that the minimum set-point is 16◦C and the maximum set-point

adjustment is 24◦C. We consider discretizing the control space with 0.1◦C. Thus, the new set-point
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may take 81 combination. For each set-point a Markov chain has been developed offline and saved

in the database to be used in the next chapter for the control applications. Fig. 3.10 compares

the Markov chains simulation with the ETP simulation. It is assumed that all devices are initially

ON and uniformly distributed over the the dead-band of each temperature set-point. For better

illustration, the results are shown in Fig. 3.10 for only 0.5◦C step, while the steady-sate power

consumption for each set-point is provided in Table. 3.2.
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Figure 3.10 Markov Models and ETP simulation at various set-points.

3.7 Conclusion

The chapter describes the TCLs aggregation as a Markov chain. Statistical learning technique is

used to derive the parameter of the aggregated model and for both homogeneous and heterogeneous
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systems. It has been shown that increasing the number of states improves the Markov chains

performance for the homogeneous TCLs. However, modeling the heterogeneous loads is subjected

to the bias-variance trade-off. Therefore, there is a specific number of states that can reduce both

of the error sources minimally. Comprehensive sensitivity analysis has shown that the 40-state

Markov chain is the best model design to approximate the heterogeneous system behavior in both

the transient and the steady-state. For this level of heterogeneity, the 40-state Markov chain is

chosen as a base case model and is used to aggregate the TCLs at various temperature set-points.

Table 3.2 Steady-state Power consumption for various set-point settings.

Temperature Power (MW)

16 ◦C 32.394

16.5 ◦C 31.375

17 ◦C 30.356

17.5 ◦C 29.339

18 ◦C 28.322

18.5 ◦C 27.305

19 ◦C 26.287

19.5 ◦C 25.271

20 ◦C 24.253

20.5 ◦C 23.235

21 ◦C 22.217

21.5 ◦C 21.198

22 ◦C 20.180

22.5 ◦C 19.160

23 ◦C 18.139

23.5 ◦C 17.119

24 ◦C 16.098
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CHAPTER 4. MARKOV MODEL EXTENSION FOR TEMPERATURE

SET-POINT CONTROL

4.1 Introduction and Overview

This chapter provides a novel modeling framework for a heterogeneous group of TCLs. The

uniqueness of this new model is the capability to capture the TCLs transient and steady-state

dynamics under various set-point adjustments and in both directions. This feature is beyond the

capability of the aggregated models developed in literature which is designed and thus valid at fixed

set-points. The new modeling approach is based on restructuring and linking Markov chains that

is previously developed at fixed set-point. thus, the model is called the Extended Markov Model

(EMM).

The objective of this new model is to provide the system services through manipulating the

stored thermal energy in the TCL devices, rather than relying on the devices’ switching capability

as discussed in literature. Regardless of the shape and the power oscillations associated with the

set-point adjustments. The objective of the EMM is to accurately describe devices’ transition

and the aggregated power behavior in linear system framework. Solution to the power oscillation

problem is proposed in the next chapter.

The details of the model development process is described for both set-point increase and

decrease cases in Section 4.2. The model formulation and the corresponding results are validated

against the actual ETP simulation in Section 4.3. The results have shown that the EMM can

capture the TCLs’ transient and the steady-state behavior for various set-point adjustments and

in both directions.
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4.2 The Extended Markov Model

This section discusses the extension of the Markov chain modeling approach to describe the

dynamical behavior involved in temperature set-point adjustments. Modifying the operating set-

point involves a slow process need to be described precisely. If this dynamics is ignored, and the

Markov chains are directly switched, the transition will not be valid to describe the aggregated

power waveform. For instance, Fig. 4.1 illustrates modifying the operating set-point of 10,000

air-conditioning load. Devices are initially operating at 20◦C and started from the stead-state

distribution as previously shown in Table. 3.1. At t = 1hr, the set-point is changed to 21◦C.

The bold line demonstrates changing the set point using the ETP simulation while the dashed

line illustrates switching the two Markov chains. i.e., using the 20◦C chain until t = 1hr then

switched to the 21◦C chain. It is clearly shown that directly switching the two Markov chains does

not describe the actual simulation from the ETP models. Therefore, broadcasting new set-points

require defining a new system able to describe the actual dynamics which involved in set-point

adjustments. This new system will be referred as the Extended Markov Model (EMM).
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Figure 4.1 Comparison between ETP simulation and Markov direct switching.

The EMM is subjected to move devices from the old set-point setting until they are regulated

at the new one. Thus, the dimension and the structure of the new model will be determined based

on the sign and the magnitude of the set-point change. For instance, if we consider modifying the
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set-point with a magnitude equal to the dead-band length, the Markov chain of the new set-point is

formed adjacent to the old one, while its relative location is based on the direction of the set-point

change, this configuration is illustrated in Fig. 4.2. For adjustment less than the dead-band, an

overlap will occur between the two Markov chains. While for adjustment larger than the dead-

band a gap will be formed between them. Therefore, the EMM need to be defined for all set-point

magnitudes and in both directions.

It is assumed that the set-point change is defined as an integer multiple (m) of the state length

(∆x), such that the new set-point can be defined as; T
′
s = Ts ±m∆x. This assumption is required

to prevent partial state involvements in the control actions. The EMM shown in Fig. 4.2 illustrates

the case when the changes equal the dead-band, hence m = ±N/2.

In general, define the EMM as shown in (4.1-4.2). The system comprises transient-states

(zt1, zt2) and final-states (zoff , zon). The transient-states of dimension 2m are modeled to de-

scribe how the devices will move form the old set-point until they reach the new one. Therefore,

these states will be populated by devices only during the transition period, and will be drained

during the steady-state conditions when all devices reaches the new set-point i.e., the final-states.

z(k + 1) = Az z(k), Az ∈ R(2m+N)×(2m+N), z ∈ R(2m+N)×1 (4.1)

z =
[

zt1

(m×1)
, zt2

(m×1)
, zoff

(N/2×1)
, zon

(N/2×1)

]T
. (4.2)

Building the system-matrix Az and initializing the states are based on the magnitude of the

set-point change. There are two main cases. First, if the set-point change is less than the dead-

band, both of the Markov chains are overlapped. Accordingly, transient and final-states share

devices from the old Markov model. However, in case of large changes, only the transient-states are

populated by devices and the final-states are initialized by zeros. The following sections provide

details for set-point increase and decrease formulation for a group of air-conditioning loads.
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Figure 4.2 Extended Markov model structure for set-point increase and decrease cases

(dark states are heavily populated by devices while the white are empty).

4.2.1 Set-point Increase Formulation

Increasing the temperature set-point for a group of air-conditioning devices forces the operat-

ing devices to turn OFF until their internal temperature increases to the new set-point setting.

Therefore, all of the ON devices that are covered in the control action will change their status

to OFF. The switching will occur between the corresponding states. i.e., states with the same

temperature representation as described earlier in (3.4-3.5). This transition is illustrated by the

dotted arrows in Fig. 4.2. Accordingly, the ON transient-states zt2 are initialized by zeros, while

the OFF transient-states zt1 are initialized by augmenting the ON and OFF devices. The variable

x refers to the states of the old Markov chain. If the set-point change exceeds the dead-band length

(m > N/2), then additional states need to be defined and initialized by zeros as shown in (4.3-4.4).

zt1i =

xi + x(N−i+1) i ≤ N/2

0 i > N/2

 , i ∈ [1, 2, ..m] (4.3)

zt2i = {0} , i ∈ [1, 2, ..m] (4.4)
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zoffi =

x(i+m) i ≤ N/2−m

0 i > N/2−m

 , i ∈ [1, 2, ..N/2] (4.5)

zoni =

 0 i ≤ m

x(N/2+i−m) i > m

 , i ∈ [1, 2, ..N/2] (4.6)

Initializing the final-states zoff and zon is also based on the set-point change magnitude. Large

changes will initialize these states by zeros, while in case of small adjustments. i.e., (m ≤ N/2) ,

the new Markov chain will map values from the old one as shown in (4.5-4.6).

The system-matrix Az has a structure as shown in (4.7); At represents the transient-states

dynamics, and A′ is the Markov transition probability matrix at T
′
s . For set-point adjustments

smaller than the dead-band, the matrix At can be obtained from the old Markov matrix A. However,

for changes larger than the dead-band, a gap will be formed between the old and the new Markov

chains. Therefore, it is required to define a general matrix U that traverse the entire control space.

i.e., the maximum and minimum set-points allowed for control ( Ts and Ts respectively). The

matrix U can be found by reassembling adjacent Markov matrices with a structure as previously

shown in (3.8).

For any set-point control magnitude, At can be structured as shown in (4.8). Where, At1 and

At2 represent the dynamics of zt1 and zt2 respectively, and can be defined as a range of elements

taken from U as shown in (4.9) and (4.10). The matrix At3 defines how the states in zt2 are linked

to those in zt1, these probability links are defined at only one location, hence At3 constitutes a

sparse matrix except only one element as shown in (4.11). Since there is no forward links between

zt1 and zt2, all of the lower diagonal elements in At are zeros. The linking matrix L defines the

probability to move devices from the last state in zt1 (m) and enters the first state in the new

Markov chain (see Fig. 4.2). Therefore, the matrix L is also a sparse matrix with one non-zero

entry at (1,m) which defined in (4.12). Once devices are regulated at the new set-point, they will

stay there and will not return back to the transient-states. Hence, all of the the upper diagonal
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elements in Az are zeros. Finally, the system output-matrix Cz (4.13) is modified to account for

the power consumption of all devices in the transient-states.

In this formulation, the ON transient-states zt2 are initialized by zeros, and the unforced system

will not return devices back to the old set-point. However, these states are modeled for the purpose

of the sequential control algorithm that may force devices to stay at the old set-point setting before

they can make the transition to the new one.

Az =

 At
2m×2m

0
2m×N

L
N×2m

A′
N×N

 . (4.7)

At =

 At1
m×m

At3
m×m

0
m×m

At2
m×m

 . (4.8)

At1 = U
[
(Ts − Ts)

N

2
+ 1 : (T

′
s − Ts)

N

2

]
. (4.9)

At2 = U
[
(2Ts − Ts − T

′
s)
N

2
+ 1 : (2Ts − Ts − Ts)

N

2

]
. (4.10)

At3(1,m) =
(
1−At2(m,m)

)
. (4.11)

L(1,m) =
(
1−At1(m,m)

)
. (4.12)

Cz = (P̄r/η)[0(1×m) 1(1×m) 0(1×N/2)1(1×N/2) ]. (4.13)

4.2.2 Set-point Decrease Formulation

Decreasing the temperature set-point on the other hand forces the OFF state devices to operate

and start the cooling cycle until they reach the new set-point setting. This action will leave all of

the OFF transient states zt1 with no devices (4.14). However, the ON transient-states zt2 (4.15)
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will be initialized by augmenting the ON and OFF devices of the old Markov chain given that the

set-point is less than the dead-band. Otherwise, additional states are required to be defined and

initialized by zeros. Initializing the final-states varies based on the size of the set-point adjustment.

Large set-point change will initialize them by zeros. However, if the set-point change is less than

the dead-band, the final-states will map devices from the old Markov chain as shown in (4.16-4.17).

zt1i = {0} , i ∈ [1, 2, ..m] (4.14)

zt2i =

x(N/2+1−i) + x(N/2+i) i ≤ N/2

0 i > N/2

 , i ∈ [1, 2, ..m] (4.15)

zoffi =

 0 i ≤ m

xi−m i > m

 , i ∈ [1, 2, ..N/2] (4.16)

zoni =

x(N/2+i+m) i ≤ N/2−m

0 i > N/2−m

 , i ∈ [1, 2, ..N/2] (4.17)

The system-matrix Az has similar structure as presented earlier in (4.7). However, the transient-

state matrix At and the linking matrix L have different representations as shown in (4.18) and (4.19)

respectively. All of the upper diagonal elements in At are zeros since devices will be regulated at

the new set-point and not allowed to return back to the old set-point. The linking matrix L defines

the probability of moving from the last state in zt2 (2m) and enters the state (N/2 + 1) of the new

Markov chain ( see Fig. 4.2). At1 and At2 can take a range of elements from U as defined in (4.20)

and (4.21) respectively. The matrix At3 defines how the states in zt1 are linked with the states in

zt2. Thus, At3 is defined at only one location as shown in (4.22).

At =

 At1
m×m

0
m×m

At3
m×m

At2
m×m

 . (4.18)

L((N/2 + 1), 2m) =
(
1−At2(m,m)

)
. (4.19)
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At1 = U
[
(T

′
s − Ts)

N

2
+ 1 : (Ts − Ts)

N

2

]
. (4.20)

At2 = U
[
(2Ts − Ts − Ts)

N

2
+ 1 : (2Ts − Ts − T

′
s)
N

2

]
. (4.21)

At3(1,m) =
(
1−At1(m,m)

)
. (4.22)

4.3 Model Verification

In order to verify the EMM formulation, it is assumed that a 10,000 air-conditioning device are

initially regulated at 20◦C and thus consuming a total aggregated power of 24.25MW . Several 40-

states Markov chains are developed offline at various temperature set-points and used to construct

the EMM model. Fig. 4.3 compares the performance of the EMM with the ETP simulation for

several set-point increase and decrease cases. For each set-point change the EMM is constructed

based on the old and the new temperature set-points. The adjustments covers the cases when the

shift is less, equal, or larger than the dead-band length. Clearly, the EMM can predicts to a large

extent the dynamics involved in various set-point changes.

4.4 Conclusion

A new modeling approach has been derived to incorporate the set-point control for the het-

erogeneous TCL devices. The model derivation is based on an extension to the Markov chain

abstraction method developed in literature at fixed temperature set-point. Model formulation

describes the TCLs’ dynamics involved in small or large set-point adjustments. The model is pro-

posed to achieve the system ancillary services through extracting or storing thermal-energy in the

TCLs by modifying the operating temperature set-point. It is shown in the validation section that

the new model can capture the TCL transitions between various set-points with acceptable level

of accuracy. Small error is naturally propagated in the EMM dynamics due to the bias-variance
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Figure 4.3 Extended Markov Model Validation (a) set-point increase. (b) set-point de-

crease.

trade-off error discussed previously in the chapter 3. Future work will address further improving

the modeling accuracy.

It is shown in the validation step that temperature set-point adjustment forces the devices

to operate in a synchronized pattern causing the aggregated power to oscillate and overshoot to

extreme values before it finally converges to a new steady-state value. The power oscillation last

for long time-intervals and decays as devices’ heterogeneity recovers the steady-state conditions.

Therefore, the set-point control requires additional control technique which is able to prevent

power oscillations and guarantees a fast convergence to the new seat-state value. These issues will

be discussed in the next chapter.
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CHAPTER 5. CONTROL DEVELOPMENT FOR THE EXTENDED

MARKOV MODEL

5.1 Introduction and Overview

It is shown in the previous chapter that changing the operating set-point achieve steady-state

load-reduction or increase services. However, the aggregated power shows unstable transients before

it finally converges to the new steady-state value. For set-point changes larger than the dead-band,

devices are forced to operate in only one state for a considerable amount of time. i.e., all devices are

either OFF with zero power consumption, or ON with maximum power consumption. Therefore,

this oscillatory transients need to be prevented through additional control technique which is able

to avoid such extreme oscillation and guarantee a fast convergence to the new steady-state value.

This chapter thus proposes the Model Predictive Control (MPC) framework to resolve the

aforementioned issues. The MPC is subjected to find the optimal sequential set-point adjustments

such that devices synchronous operation is prevented. The MPC determines the optimal devices’

flow toward the new set-point by the mean of ON/OFF switching capability. Some devices are

forced to stay at the current set-point until the other reach the new set-point setting. The ON/OFF

switching control will also be used to suppress the oscillations and force a fast convergence to the

new steady-state. When all devices reach the new set-point, the system is considered naturally

stable and no further control actions are needed.

The performance of the proposed control framework is compared with models proposed in

literature which rely only on switching the devices ON or OFF without adjusting the stored thermal-

energy level.
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5.2 Model Predictive Control with the EMM model

The direct load control paradigm adopted in this work allows load aggregators to selectivity

dispatch the set-point control, and modify the status of individual devices by switching them

between the ON and the OFF states. The EMM will be used to model devices transition between

the old and the new temperature set-points. However, if the set-point is applied to all devices at

once, devices will be synchronized. Therefore, the MPC controller is proposed to determine which

devices should accept the set-point change immediately and which devices should wait with specific

delay-time.

Accordingly, the scope of the MPC is to achieve two main objectives. First, is to determine

the optimal number of devices and their distribution that are required to stay at the old-set point

before they can make a transition to the new set-point. This will be determined at the beginning

of each planning horizon i.e., at the instant of applying the set-point change. The second control

objective is to prevent the power oscillations while devices are making the transition to the new

set-point. Some devices are required to change their status until they are finally converge to the new

steady-state value. Once convergence is achieved, the system will be stable and the new aggregated

power will be as desired.

The direct ON/OFF switching control is augmented to the EMM model and represented by

a control input u ∈ R(m+N/2). The EMM formulation with the new control feature is described

in (5.1-5.3). Switching the devices is done between the corresponding states which have the same

temperature representation. For instance, in 40-state Markov chain, states 1 and 40 have one

control input u1 that describes the number of devices that is required to switch between these

two states. The relation between the corresponding states are presented in the structure of the B

matrix (5.2). Therefore, this relation has to be defined for all of the EMM states as described in

(5.3), where the diagonal elements represent changing the status of devices during the transient
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and the final-states. The system-matrix Az is constructed as described earlier in (4.7) while the

output matrix Cz is defined in (4.13).

z(k + 1) = Az z(k) +Bz u(k) (5.1)

B =



−1 . . . 0

...
. . .

...

0 . . . −1

0 . . . 1

... . .
. ...

1 . . . 0



, (5.2) Bz =

 B
2m×m

0
2m×N/2

0
N×m

B
N×N/2

 , (5.3)

The performance index of the optimal control problem (5.4) is set to track the aggregated

power associated with the new set-point P ref with a positive weighting factors Q, while minimizing

the ON/OFF switching actions based on the weights specified by the positive-definite matrix R.

Problem formulation includes the non-negativity constraint (5.7) to all of the system states. This

constraint implies that the control actions exist only for states that are populated with devices.

Otherwise, the control actions will be forced to zero.

MinJ =

kf∑
k=k0

Q(P (k)− P ref )2 + uT (k)Ru(k) (5.4)

Such that:

z(k + 1) = Az z(k) +Bz u(k) (5.5)

P (k) = Cz z(k) (5.6)

zk ≥ 0 (5.7)



www.manaraa.com

54

5.3 Model Performance and Comparison

This section demonstrates the advantages of using the EMM when steady-state long-term ser-

vices are requested. First, these services are extracted from a modeling framework proposed in

literature which rely on the direct ON/OFF switching control but without modifying the operating

set-point (section. 5.3.1). Model performance and the associated negative consequences are ana-

lyzed and highlighted. Second, the same reference signal is used to extract the services using the

proposed modeling framework. Where, the set-point is adjusted to a new thermal energy level and

the EMM is used to represent devices transition. The results and performance of the proposed

model are compared with the first modeling technique. Both of the models are tested with the

same number of devices of 10,000 air-conditioning loads. Devices are initially regulated at 20◦C

and following the same initial-conditions and parameters heterogeneity as previously discussed in

Section. 2.4.

5.3.1 Direct ON/OFF Switching Control at Fixed Temperature Set-point

The ON/OFF switching control does not rely on adjusting the temperature set-point. Therefore,

a single Markov chain at 20◦C is used to model the devices as previously shown in Fig. 3.1. Devices

are initially following the 20◦C steady-state distribution. Thus, the aggregated power experience

no oscillations. The considered reference signal increases the power consumption by 4MW at

t = 1h , and provides a 4MW load-reduction at t = 13h . Both of the load adjustments are set

for 6-hour time-intervals as illustrated in Fig. (5.1.a). This control technique extracts the desired

services by regulating the number of devices in the ON states by switching the devices between

the corresponding states. The MPC is employed to find the optimal switching sequence that is

required to achieve these services.

The overall performance is illustrated in Fig. 5.1. The simulation results show that the aggre-

gated power can be modified to track the reference signal by applying a total number of switching

actions as in Fig. (5.1.b). Initially, increasing the aggregated power by 4MW requires switching

725 device from OFF to ON. This is not considered as a huge control effort since it is required at
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only one time-instant. However, in order to maintain the service, the total number of switching ac-

tions start increases to reach a total of 265 device at a continuous switching rate. At the end of the

load-increase service, devices are instructed to return back to the steady-state power consumption

value. This action required to turn OFF the same number of devices initially turned ON. However,

devices are forced to switch from OFF to ON with a high switching rate that eventually reaches

zero even though no services are requested. Same argument applies for the load-decrease case.
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Figure 5.1 ON/OFF switching control without set-point adjustment. (a) Aggregated

power consumption and the reference signal. (b)Total number of devices’

switching actions.

The control inputs and the number of devices in each state over the control horizon are shown in

Fig. 5.2. Clearly, most of the control efforts are exerted at the boundary states. i.e., states 1 & 40

in the case of load-increase, and at states 20 & 21 in the case of load-decrease. During the time of

extracting the services, the boundary states are highly congested in devices while a large number of

states are completely empty. This is due to the high switching rates imposed by the control actions

that is much higher than the unforced system dynamics. If we consider dividing the Markov chain

into two equal halves, the lower-half covers all states with a temperature representation less than
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the set-point (states 1-10 and 31-40). While the upper-half represents the states 11-20 and 21-30.

Fig. 5.3 gives an illustration for the operating conditions during the load-decrease case. The control

actions have moved all devices to be congested in only some of the upper-half states, while all states

in the lower-half are completely drained. The same argument applies for the load-decrease case but

devices will be congested in the lower-half. Therefore, this control approach imposes high switching

frequencies and forces the devices to operate with much shorter duty-cycles.

Figure 5.2 ON/OFF Switching Control. (a) States control actions. (b) Evolution of the

ON state devices. (c) Evolution of the OFF state devices.

The worst case situation leads to an extreme switching frequencies at the boundary states. For

instance, in the case of load-decrease, when temperature inside houses increases to state 20, the

local controllers switch the devices to state 21 to start the cooling cycle. However, the central

controller forces them to return back to state 20 in order to contribute in the the load-decrease

service. Therefore, the local and the centralized controllers are working against each other. This

action may cover a considerable number of devices and would last for the entire service-time.
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However, programmable thermostats are usually equipped with a time delay unit as a short cycling

protection. This time is required to allow the compressors equalize the internal pressure and be

able to start again. Otherwise, the motors would stall or damaged [62]. Therefore, implementing

this control technique for such services requires an extensive design consideration while in some

cases it may cause devices damage.

112
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Figure 5.3 Devices distribution during the load-decrease case.

5.3.2 Direct ON/OFF Switching Control with Set-point Adjustment

This section analyze the performance of the EMM for the same system services considered

in the previous section. Sensitivity analysis on the 10,000 air-conditioning devices has shown

that in steady-state the aggregated power consumption changes approximately 2MW for each 1◦C

variation. Therefore, achieving a 4MW load changes requires shifting the set-point by 2◦C. i.e., T
′
s

is 18◦C for the load-increase and 22◦C for the load-decrease, given that they are initially regulated

at 20◦C.

Initially, we demonstrate the effect of the set-point change in extracting the services without

introducing the ON/OFF control of the MPC. Fig. 5.4 illustrates the simulation for set-point

adjustments as discussed before. Clearly, We can see that the aggregated power follows the reference

value only in steady-state. However, during transient, set-point change causes power overshooting

and oscillations. The next discusses developing the EMM model for these set-point changes and

implementing the MPC controller to eliminate the oscillation.
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Figure 5.4 ETP simulation for adjusting the set-point (without MPC)

For each set-point change, the EMM shown in (5.1-5.3) is constructed as discussed in the

previous chapter. The EMM comprises 80 transient-states and 40 final-states, the transient states

represent two adjacent Markov chains. The order of the transient and final-states is based on

the direction of the set-point adjustment. For instance, a set-point change from 20◦C to 18◦C

dictates that the 20◦C and 19◦C are the transient-states while the 18◦C Markov chain represents

the final-states.

The EMM models are implemented with the MPC controller and the overall results are shown

in Fig. 5.5. The aggregated power consumption of the new model is able to precisely follow the load

variation services as instructed by the reference signal (Fig. (5.5.a)). All power overshooting and

oscillations have been eliminated by applying a total switching actions as shown in (Fig. (5.5.b)).

The results indicate that a large number of devices are required to switch their status when the

EMM is applied, this is shown as spikes at the instant of the set-point changes. However, the total

switching actions then converges to zero while the services are still provided.

The switching spikes in the EMM have different interpretation than in the previous case. Switch-

ing spikes in this case demonstrate the optimal sequential set-point control that should be applied

across the devices. Initially, the set-point change is applied to all device at the same time instant,
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and the EMM is formulated to describe this situation. However, this action leads to devices syn-

chronization and the aggregated power accordingly traverse extreme conditions. To prevent such

synchronization, a large number of devices are forced to stay at the old temperature set-point and

wait until they finish the current operating cycle. The concept is further illustrated in following

example which describes the first switching spike in Fig. (5.5.b).

For example, consider the operation at t = 1h, where a set-point adjustment is applied to

all devices from 20◦C to 18◦C. This set-point change instructs devices to cool the houses down.

Accordingly, ON state devices will continue their cooling cycle. However, all of the OFF state

devices will turn ON and starts the cooling cycles. This action causes the power to overshoot

to the maximum value. i.e., all devices become ON. Therefore, the MPC forces devices that are

recently changed to ON to return back to their original stats in the OFF state. Devices are forced

to stay regulating the temperature at the old set-point until they finish the OFF cycle, afterward,

the new set-point can be applied.

Therefore, the implication of the switching spikes is to determine how to initially apply the

set-point change, although they are not required to be physically implemented. The following

steps summarize the set-point control actions. First, obtain the switching spike for the next time

step. Then, in the current time step, apply the set-point change to all devices except those in the

switching spike. Third, keep all devices included in the switching spike at the current set-point and

apply the set-point change when they finish the current operating cycle.

Tracking devices’ distribution in all states and the corresponding control actions are shown in

Fig. 5.6 and Fig. 5.7 respectively. Devices are initially modeled using one Markov chain at 20◦C.

At t = 1h the EMM is formulated to move the devices to the new set-point. The devices thus

exist the 20◦C chain in Fig. (5.6.a) and enter the 19◦C Markov chain in Fig. (5.6.b). Time is

required until all devices pass through the 19◦C Markov chain and enter the final-states at 18◦C in

Fig. (5.6.c). The figure enumerates the EMM states based on the direction of the set-point change.

During the transition, control efforts are also required to prevent power oscillations and guarantee

a fast convergence to the new steady-state value. Once devices enter the final-states, the system
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Figure 5.5 Extended Markov model. (a) Aggregated power consumption and the reference

signal. (b) Total switching actions.

reaches the steady-state conditions and thus it is considered naturally stable and no further control

efforts are required. At this point there will be no dead-band contraction and devices will operate

according to the normal dead-band length.

Figure 5.6 Extended Markov model devices evolution. Transient and final-states are enu-

merated based on set-point change direction
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In both Fig. 5.5.b and Fig. 5.7 the number of devices postponed by the sequential control and

the associated distribution are not shown clearly since all of the control actions happened at the

same time-instant. Table. 5.1 provides better illustration about the exact number of devices and

their state distribution at each time instant of applying the extended Markov model.

Figure 5.7 Extended Markov model control inputs for all EMM states.

5.4 Conclusion

The work in this chapter proposed a new control architecture for the heterogeneous thermostati-

cally controlled loads (TCLs). The control is utilized to provide support to the power systems in the

form steady-state load-decrease or increase services. The services are achieved through extracting

or storing thermal-energy in the TCLs by modifying the operating temperature set-point. There-

fore, the Extended Markov model developed in the previous chapter is utilized here to describe

devices transition between the temperature set-points. It has been shown that the instantaneous

set-point adjustment causes unstable power profile with weak convergence rates which may cause

serious stability issues.

The Model Predictive Control framework with ON/OFF switching capability is proposed to

perform two main objectives. First, provide the set-point control sequentially, and second curb
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down any possible power oscillation. The results have shown that the new modeling and control

techniques minimizes the devices’ switching rates and short cycling compared to other models that

do not rely on adjusting the thermal-energy.

Table 5.1 Sequential control algorithm (devices forced to stay at old set-point by the).

t = 1h t = 7h t = 13h t = 19h

u∗i # Dev. u∗i # Dev. u∗i # Dev. u∗i # Dev.

1 1 1 266 1 172 1 2

2 2 2 272 2 214 2 2

3 1 3 266 3 213 3 2

4 1 4 267 4 207 4 1

5 197 5 269 5 205 5 120

6 275 6 269 6 204 6 294

7 291 7 269 7 204 7 337

8 292 8 269 8 204 8 337

9 293 9 269 9 204 9 343

10 293 10 269 10 204 10 344

11 293 11 269 11 204 11 344

12 293 12 269 12 204 12 344

13 292 13 270 13 204 13 344

14 293 14 268 14 203 14 344

15 292 15 261 15 201 15 344

16 293 16 212 16 182 16 344

17 295 17 39 17 94 17 345

18 301 18 1 18 0 18 351

19 306 19 0 19 0 19 358

20 360 20 0 20 0 20 315
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CHAPTER 6. MARKOV CHAINS MODELING IMPROVEMENTS

6.1 Introduction and Overview

To this end, Markov chain aggregation experience three main limitations. The limitations are

investigated and improved in this chapter as the followings:

• First, the heterogeneous parameters are not perfectly established to cover wide variety of

devices. In this Chapter, we consider performing the analysis on a more generic and compre-

hensive set of parameters.

• Second, the work presented in the previous chapters is built upon single Markov chains for

the entire heterogeneous system. Such representation experience a percentage of error which

can goes up to 10%. The error will naturally propagate to the EMM performance and the

corresponding control actions. In this chapter, clustering approach is used to divided the het-

erogeneous system into multiple semi-homogeneous groups, such that, the collective behavior

of all clusters be able to characterize the comprehensive heterogeneous system accurately.

• Third, Markov chain aggregation assumes a constant outside temperature. Thus, the ag-

gregated power appears as a constant value. In this chapter, Markov chains and the EMM

modeling approach are improved to capture the outside temperature. This step is achieved

through discretizing the outside temperature variation into small intervals and performing

the identification process at each interval. As a result, the Markov chains are represented in

linear time-varying settings.

6.2 Heterogeneous Parameters Estimation

There are different assumptions regards the parameters heterogeneity. A general assumption

usually made by considering Gaussian distributions with specific standard deviation to thermal
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resistance, thermal capacitance, and power ratings. These assumptions are initially made to con-

tradict the homogeneous systems which consider all of these parameters are the same across devices.

The previous heterogeneous parameters are not comprehensive which can be seen as only a

subgroup or single category of the actual heterogeneous TCLs. Therefore, it is required to provide

more generic assumption regards heterogeneity. For instance, if we tried to increase the standard

deviation of the power rating distribution to cover a wider range of devices ( similar to what can

be found at the distribution side), the ETP models will no longer be realistic due to the correlation

between these parameters. i.e., devices would be extremely oversized with very short ON cycling-

time or undersized with very long operating time intervals.

In this chapter, we consider performing the analysis on a more comprehensive set of parameters.

Such that, devices’ power ratings are more realistic and covers a wider range of possible power cat-

egories. To perform this analysis, the heterogeneity is not assigned for the parameters themselves,

instead, is assigned for the ON and OFF cycling times. This step gives a great advantage since it’s

much easier to specify reasonable cycling times than in assigning appropriate thermal resistances

or thermal capacitance. In addition, this gives a more practical procedure, since it is much easier

to measure the ON and OFF cycling time than measuring the thermal parameters themselves. The

process illustrated in Algorithm. 1 gives an overview of this analysis.

The analysis starts by running a Monte Carlo sampling to specify legitimate power rating

for each device. Five Gaussian distributions are considered for the power ratings as specified in

Table. 6.1. For a more conservative approach, the parameters need to be evaluated at extreme

operating conditions. i.e, relatively high outside temperature and low set-point. Accordingly, the

resulting ETP models will remain valid at all other conditions. However, the ON and OFF cycling

times need to be appropriately estimated when the operating condition is selected. For instance, at

high outside, low set-point temperatures, the air-conditioner requires more time to cool the house.

Thus, the ON cycling time is higher than the OFF time. In contrast to the low outside, high

set-point temperatures, where the OFF cycling time is the higher.
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Algorithm 1 Paremeter estimations for a generic hetrogenous TCLs

1: Stage 1: Sampling: specify the device power rating Si.

2: Stage 2: Specify appropriate operating conditions Ts,Ta.

3: Stage 4: Sampling: Assign cycling times toffi ,toni .

4: for device i is violating the minimum or maximum cycling times do

5: Replace toffi ,toni with more appropriate values.

6: Stage 5: Parameter estimation based on the on and off cycling times equations derived from

the ETP model.

toffi = RiCiln
Ta − Ts + 0.5D

Ta − Ts − 0.5D
.

toni = RiCiln
RiSi − Ta + Ts + 0.5D

RiSi − Ta + Ts − 0.5D
.

7: Output: Ri, Ci

Table. 6.1 demonstrates the heterogeneous assumption considered in our analysis. Five power

ratings categories are considered which covers small (1KW) to large (5KW) air-conditioners. Small

standard deviation of 0.1 is imposed for all of the groups for more practical assumption. For each

power category the charging and discharging times are specified as shown in Table. 6.1. Relatively

large standard deviation of 8 minutes is considered for all of the groups. This step will ensure

that the heterogeneous system covers houses with good and bad thermal characteristics. As can

be seen in the table, the mean value of the charging time is higher than the discharging time since

these values are assumed at relatively high out-side temperature and low set-point values. i.e.,

Ta = 35◦C, and Ts = 17◦C.

Table 6.1 Assumptions of heterogeneous parameters (mean vlues are provided in minutes)

.

Category Rating (KW) tON (minutes) toff (minutes)

# # of A/Cs Mean SD Mean SD Mean SD

G1 5,000 1 0.1 20 8 15 8

G2 5,000 2 0.1 25 8 20 8

G3 5,000 3 0.1 30 8 25 8

G4 5,000 4 0.1 35 8 30 8

G5 5,000 5 0.1 40 8 35 8



www.manaraa.com

66

The results of performing the procedures specified in Algorithm. 1 are illustrated in Fig. 6.1. The

same operating conditions assigned in the initial assumptions are also used in the procedure (Ta =

35◦C, Ts = 17◦C). Clearly, we can see the correlation between devices’ power ratings and their

thermal characteristic. As the device’s power rating increases, the value of its thermal resistance

decreases, while its thermal capacitance increases. The obtained values are fixed throughout our

analysis and used for the other operating conditions.

Figure 6.1 Heterogeneous parameter results (Top: Thermal Resistance ◦C/kw).(Bottom:

Thermal Capacitance (kwh/◦C). (Ri, Ci corresponds to Gi in Table.6.1).

6.3 Initial Clustering Based on Power Ratings

Under the new heterogeneity assumption, it is not practical to represent all devices in a single

Markov chain, higher errors are expected due to the wide variety of the power ratings. Accordingly,

more accurate performance would result if we represent each power group shown in Table.6.1 with

an independent Markov chain as shown in (6.1)-(6.3). Where, Ng is the optimal number of states

representing each power group, and Ag is the corresponding Markov chain. The statistical learning

process and the optimal number of state analysis described in the previous chapters are performed
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here for each power rating group. The normalized root mean square error is found for each group.

It is assumed that all devices are initially ON to compare the performance under the worst case

scenario. As illustrated in Fig. 6.2, the results show that each power group has different optimal

number of states to obtain the best performance with minimal error.

xg(k + 1) = Agxg(k), Ag ∈ RNg×Ng , x ∈ RNg (6.1)

Pagg(k) =
∑
g

Cgxg(k), Cg ∈ R1×Ng (6.2)

Cg = (S̄g)[0(1×Ng/2) 1(1×Ng/2)] (6.3)
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Figure 6.2 Optimal number of state for each power group.

The time domain simulation of each power group is shown in Fig. 6.3. The performance of

the Markov chins are compared with the ETP simulation at the extreme initial conditions (worst

case scenario). The result of combining the five Markov chains is also shown in the right-bottom

graph. Clearly, we can see that the performance of the Markov chins has a percentage of error.

Relatively large deviation resulted when comparing the performance of the Markov chains during

the transient period. The Models do not have perfect match with the ETP simulation, while in
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some cases the dynamics is out of phase. The details of the normalized root mean square error for

all of the groups are shown in Table.6.2. The combined performance,i.e., the Markov chains of the

five groups together, has a total error of 6.6.39 %.

Figure 6.3 Markov chain perofmance at the optimal number of states.

In the next section, our objective is to further divide the heterogeneous TCLs into cluster in

order to reduce this error and improve the Markov chain representation.

Table 6.2 Optimal number of bins and the resulting error.

Group Rating optimal bins % error

G1 14 5.1169

G2 14 6.8525

G3 18 7.6087

G4 22 8.4093

G5 26 9.1961

Combined - 6.3904
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6.4 Devices Clustering Based on the Charging and Discharging Time

Characteristics

Markov chains are initially developed for homogeneous systems. such that, all devices under

control share the same power and thermal ratings. Accordingly, the results of the corresponding

Markov chains are very accurate. However, for heterogeneous systems, due to the variations in the

speed of charging and discharging rates. Single Markov chains will only capture the mean behavior

of all devices. Therefore, in this section, the K-mean clustering is utilized to systematically divide

the devices into multiple clusters with similar charging and discharging characteristics. such that,

the entire heterogeneous system is approximated with multiple semi-homogeneous systems. In this

analysis, each device is represented by a single data point vi = (toni , t
off
i ), which combines the time

required for the cooling and the hating cycles. The objective in Eq.(6.4) is set to minimize the

squared Euclidean distances between data points and the corresponding nearest mean µk; where

K is the number of the required clusters. A binary variable xi,j is used to designate single devices

in only one cluster as demonstrated in Eq.(6.5). while in Eq.(6.6), the mean value of each cluster

is updated. Sensitivity analysis has shown that dividing each power group into 10 clusters, (see

the results in Fig. 6.4), highly improves the accuracy and provides satisfactory performance. The

validation results are provided in the next section.

MinJ =

Ng∑
i=1

K∑
j=1

xi,j‖vi − µj‖2 (6.4)

K∑
j=1

xi,j = 1, ∀i ∈ Ng (6.5)

µj =

∑
i xi,jvi∑
i xi,j

, ∀j ∈ K (6.6)

xi,j ∈ {0, 1} (6.7)

The detailed results of the k-mean clustering technique is demonstrated in Table. 6.3 (K=10).

The outcome of the clustering optimization are the clusters’ mean (µk) and the classifier index
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Figure 6.4 Illustration of the clustering results (10 CLusters/Group).

(xi,j) which designates the devices to the corresponding clusters. It is important to emphasis here

that the clustering optimization is a non-convex problem. Therefore, the outcome is a local optimal

solution. Repeating the clustering algorithm will result in a different local optimal solution. The

clusters’ mean may slightly move. Accordingly, Some devices previously considered in one specific

cluster would immigrate to another adjacent cluster, especially those devices located far from the

mean at the boundaries. Therefore, it is important to perform this analysis only once and fix the

solution for all other operating conditions. The results presented in Table. 6.3 illustrate the number

of devices in each cluster and the corresponding clusters’ mean (ton,toff )

6.5 Markov Model Performance under clustering

The heterogeneous devices are now clustered into multiple groups, such that, devices belongs

to each cluster have almost similar charging and discharging characteristic. To evaluate the perfor-

mance of the new devices representation, each cluster is processed independently. Single Markov

chain is identified to each cluster based on the inside temperature and power consumption time

series data (see Fig. 3.2). The data are generated by running the corresponding ETP models.
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Table 6.3 Clusters’ mean and associated number of devices (Time is provided in minutes)

Group G1 Group G2 Group G3 Group G4 Group G5

# ton toff # ton toff # ton toff # ton toff # ton tof

C1 472 21.0 27.2 412 18.9 31.5 576 19.6 20.0 664 31.9 46.7 649 34.0 44.7

C2 646 14.4 14.1 919 19.7 24.1 409 28.2 48.6 194 33.4 63.3 466 35.7 63.1

C3 714 18.1 23.0 153 25.6 48.8 416 23.5 42.0 667 25.5 30.4 424 30.7 55.8

C4 414 8.8 6.7 277 10.6 8.1 773 26.9 36.2 482 33.2 54.2 184 24.4 25.4

C5 180 22.5 41.3 588 24.4 33.6 241 14.7 12.4 897 27.3 35.8 734 34.8 50.6

C6 565 11.9 10.5 287 20.9 39.8 496 21.7 33.5 368 27.5 50.8 545 28.2 33.8

C7 927 17.3 18.1 744 17.9 19.0 793 22.1 25.9 142 18.3 16.6 172 37.6 71.9

C8 261 15.5 30.0 742 22.8 27.7 669 25.4 30.4 398 23.0 24.3 762 30.3 40.0

C9 321 21.9 33.5 569 15.0 14.0 141 30.0 56.7 634 31.0 40.5 564 29.2 47.0

C10 500 13.7 18.9 309 26.9 40.0 486 29.6 42.0 554 26.3 42.9 500 36.8 56.3

In order to gain the best performance, the sensitivity analysis performed earlier in Chapter.3 is

repeated here to find the best number of states representing the individual clusters. The Markov

chain performance is evaluated for various number of states. The evaluated is found only under the

worst-case initial condition (all devices are initially in the ON-state). Clearly, we can see in Fig. 6.5

that for all of the clusters, there is only one optimal number of states to represent the cluster.
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Figure 6.5 Optimal number of states for individual clusters.

The clustering approach highly improves the modeling performance. It is clear in Fig. 6.6 that

the error is decreased from individual groups point of view and the combined response point view
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(shown in the right-bottom graph). Under clustering, the resulting normalized root mean square

errors are shown in Table.6.4. From individual groups point of view, the error is significantly reduced

in all of the cases, while in the combined response the error is reduced to 2.087%, compared to

6.39% without clustering.

The system in this case is represented by 50 Markov chains (10 clusters for each power group) as

shown in Eqs. (6.8)-(6.10). The index g represents the group, while the index ` indicates the cluster.

Considering more clusters would further improves the results. However, this step will increase the

computation complexity for both the predictions and the control applications. Simulating all of

the clusters for the 10-hours horizon, with 10 seconds time-step, last approximately 5.32 seconds.

xg,l(k + 1) = Ag,lxg,l(k), Ag,l(k) ∈ RNg,l×Ng,l , xg,l ∈ RNg,l (6.8)

Pagg(k) =
∑
g

∑
l

Cg,lxg,l(k), Cg,l ∈ R1×Ng,l (6.9)

Cg,l = (S̄g)[0(1×Ng,l/2) 1(1×Ng,l/2)] (6.10)

Table 6.4 Optimal number of bins and the resulting error.

Group Rating optimal bins (10 clusters) % error

G1 (60,42,54,22,40,30,56,42,56,50) 3.0315

G2 (46,58,42,18,68,62,42,64,34,72) 3.8188

G3 (42,64,66,76,22,54,58,72,50,84) 3.078

G4 (88,60,58,88,70,78,26,50,100,70) 3.7215

G5 (120,72,94,38,108,66,70,74,94,120) 3.5291

Combined - 2.087

6.6 Outside temperature variations

The outside temperature (Ta) plays a significant role in determining the TCLs’ aggregated

power. Summer peaks are always considered as a big challenge to systems’ operators which is
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Figure 6.6 Markov models performance under clustering

mainly caused by the air-conditioners penetration. Therefore, for more realistic results, the aggre-

gated model should appropriately consider the variation of Ta(k), and captures the changes in the

aggregated power accordingly. Markov chain identification techniques are incompetent in deter-

mining time-varying transition probabilities. In general, the techniques are based on calculating

the average probabilities over a time-series observations generated by running the ETP models.

However, for more practical results, it is important to improve the Markov chain representation

and its identification process to capture this variation. One possible way to conduct this analysis by

discretizing Ta(k) into small intervals and repeat the identification process at each small interval.

Such that, the resulting model will be time-invariant inside the small intervals while time-varying

outside. In this way, the Markov chains will be able to capture the low frequency component of

Ta(k).

Temperature set-point control will add another dimension to the problem complexity. The

characteristics of the Markov chain and the internal transition probabilities will also vary as the
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temperature set-point changes. Therefore, we considered building a comprehensive database which

covers all possible combinations between the set-points and out-side temperature variations. This

database is more generic and can be used to track any out-side and set-point temperature profiles.

The database considers 0.1 Celsius discretization-step for both the set-point and the outside tem-

perature. An illustration is shown in Fig. 6.7, Each single point represents 50 Markov chain since

the heterogeneous system is now modeled by 5 power groups and 10 clusters for each group.

Eigenvalue analysis is performed to all of the Markov chains as described previously in Sec-

tion. 3.5. This analysis yields the invariant distribution for each temperature setting. The invariant

distribution which refers to the devices’ distribution during steady-state can be used to find the

aggregate power of each independent cluster. The aggregate power is found using Eq. 6.9. Accord-

ingly, the database now contains the Markov chains and the corresponding aggregated power for

each cluster. The database information will be used later for the control applications.
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Figure 6.7 Illustration of Markov Chains Database. Direct switching for transitions along

the x-axis, EMM for transitions along the y-axis

6.7 Markov Model Performance under out-side temperature variations

This section validates the Markov chain performance under two temperature variations scenar-

ios. First, only the outside temperature variation is considered. In this case, the Markov chins
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make direct switching along the x-axis of Fig. 6.7. Second, the outside temperature variation is

considered with set-point adjustment. Therefore, the Extended Markov model will be used to make

the transitions along the y-axis of Fig. 6.7.

In the first scenario, two outside temperature profiles are considered as shown in Fig. 6.8(a).

The actual temperature variation is approximated by 0.1 Celsius discretization to agree with the

database developed in the previous section. Based on this discretization, the Markov chains need to

make in total 60 switching action to represent Ta1, and 80 times to capture Ta2. Transitions happen

along the x-axis. The Markov chain approximation is compared with the actual ETP simulation in

Fig. 6.8. Clearly, this new time-varying representation accurately captures the out-side temperature

variations with a total error less than 1% in both cases.
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Figure 6.8 Markov chain performance under outside temperature variations.

In the second scenario, we consider validating the Markov chains under both the set-point

adjustments and the outside variations. To align this section with our objectives in the next

chapter; mainly, utilizing the TCLs to improve the power system flexibility. The Markov chains

are validated to describe the TCLs in providing three main ancillary services. Namely, emergency
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spinning reserves, load reduction, and load shifting. Set-point adjustment is the main tool to extract

the three ancillary services. For the emergency reserves, we consider increasing the set-point at

t = 8hr from 20◦C to 22◦C for only one hour as shown in Fig. 6.9. This set-point change is order

to achieve fast load reduction which can help the system during emergencies. From the Markov

modeling point of view we can see that the Extended Markov Model (EMM) can accurately capture

both, the out-side temperature variations, and the set-point adjustment. In the next chapter, the

EMM model and the MPC controller will be used to derive appropriate control actions to smooth

the oscillations and prevent all possible synchronous operations.
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Figure 6.9 Extended markov model performance for spinning reserves ancillary services.

The second temperature set-point control is designed for load reduction applications. In this

case, the set-point is also adjusted from 20◦C to 22◦C but is implemented for a longer duration.

All devices are instructed to increase the operating set-point during the peak-hours. The service

starts at hour 10 and finishes at hour 16. Smoothing the fast charge and discharge will be discussed

in the next chapter. Clearly, we can see that the EMM approximation, to a high accuracy level,

captures both the set-point change and the outside temperature variations.
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Figure 6.10 Extended markov model performance for load reduction ancillary services.

The last set-point change is designed to provide load shifting aspects. i.e., devices are pre-

cooled before the peak hours in order to be able to provide load reduction during the peak hours.

Devices are instructed to decrease their operating set-point to 18◦C before the peak hours and

resume their normal operations at 20◦C during the peak hours. Regardless the fast charging and

discharging rates, the EMM approximation performs well in approximating the set-point change

and the ambient temperature variations.

6.8 Conclusion

This chapter has improved the Markov chains performance under two main aspects. First,

the Markov chain representation has been improved to capture more comprehensive heterogeneous

parameters. The results have shown that Markov chains are more accurate if the heterogeneous de-

vices are divided into multiple semi-homogeneous clusters. i.e., devices share similar power ratings,

charging time, and discharging time characteristics. Under clustering, the collective behavior of all

clusters is able to accurately characterize the entire heterogeneous system. In the second aspect,
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Figure 6.11 Extended markov model performance for load shifting ancillary services.

the outside temperature variations is considered. A database is developed based on discretizing

both the set-point control and possible outside temperature variations. The results have shown

the extended Markov model can accurately capture both the set-point adjustments and ambient

temperature variations.

To attain this accuracy, two level of complexity are added to the problem. First, the number of

Markov chains and their corresponding states have been increased. Second, to capture the outside

temperature variations, the extended Markov model become a time-varying system. To account for

these challenges, a decentralized time-varying model predictive control is proposed and discussed

in the next chapter.
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CHAPTER 7. AGGREGATION IN THE DAY-AHEAD MARKETS FOR

ANCILLARY SERVICES

7.1 Introduction and Overview

This chapter investigates the capability of the Thermostatically Controlled Loads (TCLs) in

providing three main ancillary services. The services are designed as Demand Response (DR) pro-

grams and integrated to the Day-head energy and reserves market. The Security constrained Unit

Commitment (SCUC) problem is used to represent the day-ahead market. The three ancillary ser-

vices are; the emergency spinning reserves, the load reduction, and the load shifting DR programs.

System operators conduct the SCUC as a tool to dispatch the available conventional thermal units

including the DR resources in hourly basis for the next day.

The DR ancillary services are provided through charging or discharging the TCLs with ad-

ditional thermal energy proportional to the required power performance. Temperature set-point

adjustment is the main control tool to modify the aggregate power. Both the Extended Markov

Model (EMM) and the Model Predictive Control frameworks (MPC) are utilized in this chapter

to modify the aggregated power based on the requirements of each ancillary service. Quantifying

the TCLs’ capability is made based on the assumption that the customers agreed to allow their

temperature set-point being adjusted within ±2◦C.

The heterogeneous parameters and the clustering results obtained in the previous chapter are

used in our analysis in this chapter. In case of load increase or decrease dispatch, each cluster is

requested to modify the set-point and achieve certain power services proportional to the number

of devices belongs to the cluster. The DR programs are designed as Mixed integer linear models

with appropriate capability and charging/discharging constraints.
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7.2 Time-varying Model Predictive Control Framework

Load aggregators are the entities responsible for controlling the devices at the distribution

side. Under perfect monitoring and control conditions, aggregators are required to quantify the

capability of the underlying devices based on the comfort level specified by the customers’ contracts.

Under each aggregator, devices are clustered based on their power ratings and the charging and

discharging rates as discussed in chapter.6. In order to simplify the complexity of the control

problem, it is more practical to move from the centralized to a decentralized approach. Such

that, the control problem specifies each cluster (l) as an independent entity. Accordingly, the

advancements in parallel computing can make the solution of such problems very fast and suitable

for online environments.

The control problem is modified as follows; The performance index shown in (7.1) is subjected

to minimize the deviation between the cluster’s aggregated power Pl(k) (7.3) and the associated

reference signal P ref
l . There is no limitation governing the reference signal. However, in order to

completely eliminate the ON/OFF switching actions and rely solely on the stored thermal energy,

the reference signal should be the expected power value at the new temperature set-point. The

expected power can be inferred by performing eigenvalue analysis to the Markov chains identified

previously in the offline process (Section. 6.6).

During the transition between the set-points, devices switching (ON or OFF) is needed ul(k)

to maintain the stability of the aggregated power by preventing synchronous operations. However,

during steady state, when all devices reach the new set-point, no further ON or OFF switching

actions are required, and devices will naturally achieve the load increase or load decrease services.

The EMM model shown in (7.2) is formulated to describe devices transition between the old and

the new set-points. Details regards the control input matrix (B) and the physical meaning of the
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none-negativity constraint (7.4) can be found in Section.(5.2). Note that the EMM formulation

(7.2) holds the time-varying setting to account for the outside temperature variations.

MinJ =

kf∑
k=ki

Q(Pl(k)− P ref
l )2 + ul(k)TRul(k) (7.1)

zl(k + 1) = Al(k)zl(k) +Blul(k) (7.2)

P agg
l (k) = Clzl(k) (7.3)

zl(k) ≥ 0 (7.4)

The control problem is used to assess the TCLs under the three DR ancillary services and

discussed in the following sections.

7.3 Spinning Reserves Ancillary Services

The balance between generation and load has to be always maintained. Generation deficiency

causes the power frequency to drop significantly making the system vulnerable to brown or black-

outs. In case of emergencies, load shedding schemes are implemented to disconnect large portion

of the load and save the system. Therefore, systems operators have to maintain enough amount of

spinning reserves available online in case of emergencies. Spinning reserves are required to ramp very

fast to supplement any possible large deficiency in generation. To maintain the system reliability,

it is usually required to have enough amount of reserves equal to the largest unit committed in

the system. The spinning reserves can also be provided by the load instead of generation. Fast

load reduction in case of emergency has the same effect as the power provided by the high ramping

units. This section discusses how such reserves can be extracting by implementing temperature

set-point control on TCLs.
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The firs DR scenario (shown in Fig. 7.1) assumes fast thermal energy discharge, the operating

set-point is suddenly increased from 20◦C to 22◦C for a period of one-hour. Since the new operating

set-point is higher than the actual indoor temperature, devices react to this instruction by turning

to off-state, while their inside temperature start slowly increasing to 22◦C . This fast transition

from ON to OFF causes the aggregated power to experience an abrupt fall similar to the load-

shedding schemes implemented by the operators in case of contingencies. This is considered as a

great advantage the TCLs can provide. i.e., the power is lost for a certain amount of time while

devices are not completely disconnected. In this case, the stored thermal energy is utilized to make

this service. The thermal energy dissipation is relatively slow, devices will take long time until the

internal temperature reaches the 22◦C.

However, at the end of the service time, when all devices are instructed to charge again by

resuming their normal operations at 20◦C, the aggregated power overshoot to a very high value

and starts to oscillate due to devices’ synchronous operation (can be seen by the ETP simulation

with Ts control and its EMM approximation). This situation can be harmful to the power system

and must be mitigated in a coordinated control. Therefore, the transition from 22◦C back to 20◦C

must be implemented in a sequential pattern which revealed by implementing the MPC.

The blue curve in Fig. 7.1 demonstrates the aggregated power behavior after implementing the

MPC control actions (shown in the bottom graph). The result shows that the aggregated power

stability can be maintained if suitable set-point time delay is specified for 11, 849 devices. Since

the EMM combines both the Markov chains at the old and the new set-points, the MPC forces

large number of devices to stay one more cycle at the old set-point before they can make transition

to the new set-point. The time required for each device to finish the current operating cycle is

the sequential control time delay. In addition to the optimal sequential set-point adjustments, the

MPC performs ON/OFF switching actions to curb the oscillations and provide smother responses.

Once all devices return to 20◦C, the switching actions almost converges to zero.

During the service time, zero power consumption is given as the reference signal to all clusters

i.e., P ref
l = 0, 11hr ≤ k ≤ 12hr. Since the unforced response can not maintain zero power
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consumption for the entire service time, ON/OFF switching actions are exerted by switching devices

to OFF (the negative sign indicates a forced transition from ON to OFF). At the end of the service

time (k = 12hr), the MPC controller prevents all devices to return back simultaneously to 20◦C,

large number of devices are delayed in order to give smooth return, otherwise, the power will

overshoot and oscillate afterward. The reference signal given at ( k = 12hr) is the cluster’s nominal

power at that time which is identified using the eigenvalue analysis.
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7.3.1 Demand Response Program for Spinning Reserves

Dispatching the TCLs to provide such services requires specifying the time constraints associated

with the ancillary service. ST is defined here as the service time which is equal to one hour as

illustrated in Fig. 7.1. At the end of the service time, the permitted thermal energy is already

discharged. Therefore, it is required to charge the devices again at 20◦C to allow another dispatching

signal. The charging time is relatively slow due to both the natural slow temperature trajectories

and the time delay imposed by the sequential control. The no dispatch time (shown as ND in
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Fig. 7.1) is estimated by the load aggregators and notified to the operators to prevent violating the

customers’ comfort.

Based on the previous discussion, the model shown in (7.5-7.9) allows system operators to dis-

patch the aggregate (i) at hour (t) to supply an amount of reserves equal to (DRRes). This amount

is thus bounded by the maximum load reduction capability under the fast discharge scenario. This

value represented by PMax
(i,t) in (7.5) which represents the average aggregated nominal power at each

time interval. The binary variable (XRes) is used as commitment indicator.

Once an aggregator is dispatched to discharge the devices at any given hour, aggregators need

time to apply the control and bring the temperature back to the nominal value. The no dispatch

time ND is imposed by constraint in (7.6). For coordination purposes, a flag FRes is introduced in

(7.7) to indicate all time intervals the aggregator is committed to provide reserves (This includes

both the service time and the no dispatch time). This flag will prevent the same aggregator being

dispatched for other DR services during the discharge and the charging modes. Similarly, in (7.8)

aggregators will not be able to provide the emergency reserves while providing other DR services.

i.e., load reduction FLr and load shifting FLs, both will be defined in their programs in the next

sections. (Note: constraint (7.8) is repeated twice for each flag but combined for simplicity).

0 ≤ DRRes
(i,t) ≤ P

Max
(i,t) X

Res
(i,t) (7.5)

1−XRes
(i,t) ≥

t−1∑
t−NDi

XRes
(i,tx) (7.6)

t+NDi∑
t

FRes
(i,tx) ≥ (NDi + 1)XRes

(i,t) (7.7)

XRes
(i,t) ≤ 1− FLr/Sh

(i,t) (7.8)

XRes, FRes, FLr, FLS ∈ {0, 1} (7.9)
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7.4 Load Reduction Ancillary Services

Other ancillary services do not require the fast thermal energy discharge. For instance, for peak

clipping applications, longer time frames are involved. Such load reduction can be performed by

increasing the operating set-point during the service time and return it back to the nominal value

afterwards. However, the fast thermal energy discharge and charge are curbed by implementing

the sequential set-point control, such that, the aggregated power stability can be maintained as

dictated by the reference signal. The difference in the load reduction program compared to the

emergency reserves is that devices are instructed to operate at higher set-point for a longer time

span.

An example of this scenario is provided in Fig. 7.2. The analysis here assumes that the set-

point adjustment can be made for 5 hours (The value of service time ST is usually constraint to

customers’ contracts. i.e., for how long it is allowed to stay at the maximum set-point). The

temperature set-point is adjusted at t = 11 hr from 20◦C to 22◦C, while at t = 16 hr is brought

back to 20◦C. The simulation of the ETP models for this set-point adjustments and the EMM

approximation are also shown in sold black and red lines respectively. The effects of the fast thermal

discharge and thermal charge are obvious at t = 11 hr and at t = 16 hr.

The blue curve in Fig. 7.2 shows the aggregated power after implementing the MPC control

actions (shown in the bottom graph). We can see that in order to curb down the fast thermal

discharge at t = 11 hr, the MPC implement the sequential set-point control for 10,943 devices.

While to avoid the fast thermal energy charge, the sequential set-point control is implemented for

11,908 devices.

During the service time, the reference power is specified as the clusters’ power at the new

temperature set-point (22◦C), while during the no dispatch time, the reference power is specified

as the clusters’ power at the nominal temperature set-point (20◦C). In this example, the load

reduction ancillary service is mainly achieved by extracting some of the stored thermal energy.

Clearly, we can see that the amount of the ON/OFF switching actions are minimal and converges

to zero during and after the service time.
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Figure 7.2 load reduction demand response. Top: Aggregated Power. Bottom: total

control actions perfomred by the MPC

7.4.1 Demand Response Program for Load Reduction

In the load reduction program, load aggregators are requested to maintain the ancillary service

(DRLr) for consecutive time intervals (ST ). The minimum and maximum load reduction capabil-

ities, ∆LRMin,∆LRMax respectively, are specified by the aggregators based on the minimum and

maximum set-point adjustments allowed for control. The capability limits are imposed in (7.10).

The model defines in (7.11) a dispatch indicator SLr
(i,t) to identify the dispatch starting time (binary

variable will be set to one once the aggregator i is requested to provide load reduction). This

indicator is used in (7.12) to insure that the commitment is performed for the entire service time

(ST ). The constraint defined in (7.13) forces the no dispatch time (ND) similar to constraint (7.6)

in the spinning reserves model. The load reduction flag FLr is set in constraint (7.14) to indicate

that the aggregator is committed for load reduction and not available during both the service time
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and the no dispatch time. Finally, the model in (7.15) verifies that the aggregator is not committed

for other demand response services.

LRMin
(i,t) X

Lr
(i,t) ≤ DR

Lr
(i,t) ≤ LR

Max
(i,t) X

Lr
(i,t) (7.10)

SLr
(i,t) ≥ X

Lr
(i,t) −X

Lr
(i,t−1) (7.11)

XLr
(i,t) ≥

t−1∑
t−STi+1

SLr
(i,tx) (7.12)

1−XLr
(i,t) ≥

t−STi∑
t−STi−NDi+1

SLr
(i,tx) (7.13)

t+NDi∑
t

FLr
(i,tx) ≥ (NDi + 1)XLr

(i,t) (7.14)

XLr
(i,t) ≤ 1− FRes/Sh

(i,t) (7.15)

XLr, SLr ∈ {0, 1} (7.16)

7.5 Load-Shifting Ancillary Services

Load shifting program allows the aggregators to pre-cool the houses at a lower temperature set-

point during the off-peak hours. Charging the houses with more thermal energy gives the potential

to release this energy during the peak hours, such that, a load reduction can be achieved. The

difference between load shifting and load reduction programs is that, in load shifting, houses are

pre-cooled then returned back to the preference set-point, while in the load reduction program,

houses are heated during the service time (relative to the preference set-point) then returned back

to the preference value after the service.
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An example of load shifting is demonstrated in Fig. 7.3. All devices are instructed to operate at

18◦C before the peak hours. The order of storing additional thermal energy should not be instructed

at the same time instant. Otherwise, the aggregated power will experience a sharp increase (See the

ETP with set control and the EMM approximation). Therefore, the MPC determines the optimal

sequential set-point control such that the aggregated power will move smoothly to the new steady

state value. In this case, the sequential set-point control is applied for 13, 775 devices. During

pre-cooling, the reference signal is specified as the clusters’ steady state power at 18◦C.

During the peak hours, devices are instructed to release the stored thermal energy to provide

sustained load reduction. The sequential set-point control is needed to avoid the fast thermal

energy discharge. In this case, the sequential set-point control is assigned for 10, 943 devices. It is

important here to provide a reference signal which can guarantee achieving a load reduction. For

instance, if we provide the clusters’ aggregated power at 20◦C as the reference signal, then the

aggregated power will go back to the nominal value without net load reduction. Therefore, the

clusters’ aggregated power at 22◦C is used here as a reference signal.
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7.5.1 Demand Response Program for Load-Shifting

To model the load shifting capability, load aggregators are required to specify several parame-

ters. Those parameters are determined based on the flexibility in adjusting the customers’ set-points

and their comforts boundaries. i.e., the minimum set-point adjustment specifies the load increase

capability (MaxUp), and the maximum set-point value determines the load decrease capability

(MaxDn). The limits are demonstrated in Eq.(7.17). The constraint impose the limits for both,

the load increase variable DRUp
(i,t), and the load decrease variable DRDn

(i,t).

The indicators (SUp/Dn) are defined in (7.18) for the load increase and the load decrease to

specify the starting time for both cases. The indecators are then used in (7.19) to force the

minimum service times (ST1, ST2) as shown in Fig.7.3. The no dispatch constraint is defined in

(7.20) to verify that all devices are charging back to the normal operating conditions. The model

in (7.21) prevents giving discharging orders while devices are not previously charged. While the

constraint defined in (7.22) verifies that there will be no charging and discharging orders at the

same time instant. Finally, the constraint in (7.23) sets the load shifting flag, and (7.24) verifies

the other demand response flags.

Min
Up/Dn
(i,t) X

Up/Dn
(i,t) ≤ DRUp/Dn

(i,t) ≤Max
Up/Dn
(i,t) X

Up/Dn
(i,t) (7.17)

S
Up/Dn
(i,t) ≥ XUp/Dn

(i,t) −XUp/Dn
(i,t−1) (7.18)

X
Up/Dn
(i,t) ≥

t−1∑
t−ST1/2+1

S
Up/Dn
(i,tx) (7.19)

1−XDn
(i,t) ≥

t−ST2∑
t−ST2−NDi+1

SDn
(i,tx) (7.20)

XDn
(i,t) ≤

t−1∑
t−ST2+1

XUp
(i,tx) (7.21)
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1−XDn
(i,t) = XUp

(i,t) (7.22)

t+NDi∑
t

F
Up/Dn
(i,tx) ≥ (1 +NDi)(X

Up
(i,t) +XDn

(i,t)) (7.23)

X
Up/Dn
(i,t) ≤ 1− FRes/Pc

(i,t) (7.24)

XUp, SUp, XDn, SDn ∈ {0, 1} (7.25)

7.6 Security Constraint Unit Commitment Co-Optimization Problem

The Unit Commitment (UC) problem over a specified planning horizon is usually conducted

by system operators to determine the optimal dispatch of the thermal generation units. Conven-

tional units are dispatched to satisfy both the energy and the reserve requirements with minimum

cost. Problem formulation constitutes a Mixed Integer Linear Programming (MILP) problem. Our

objective in this analysis is to integrate the three demand response programs with the unit com-

mitment problem and regard the flexibility of the TCLs as virtual power plants. Dispatching the

TCLs to provide spinning reserves, load reduction, and load shifting is expected to provide valu-

able economical and environmental benefits. Demand response resources can displace the expensive

peaking and thus reducing the Market clearing price. Moreover, shifting loads or providing load

reduction services can minimize the system ramping requirements and increase the opportunity to

serve the load with more economic base-case generations.

The main focus of this chapter is the TCLs modeling and their integration with UC problem.

These models will facilitate the dispatching process based on the true TCLs characteristics in

the charging and discharging capabilities once their operating set-point is modified. This chapter

considers the conventional UC problem which includes only the costs of the thermal power plants

with no demand bidding [67]-[70].
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7.6.1 Objective Function

The conventional objective function 7.26 of the UC problem is to minimize the costs associated

with the thermal units, these costs are mainly; the energy production cost Cg
i , the fixed operational

cost Cf
i , the start up cost Cu

i , the shutdown cost Cd
i , and the spinning reserve cost Cs

i . The problem

involves binary variables. (i.e., X(i,t) as a commitment variable, Y(i,t) as a start up variable, and

Z as a shutdown variable), and continuous variables. (i.e., Pg(i,t) indicates the generation output

level, and Pgs(i,t) represents the amount of the spinning reserves). The index i is used for the

thermal units, while the index t is used for the planning horizon.

Min J =
T∑
i

{ G∑
i

{
Cg
i Pg(i,t) + Cf

i X(i,t) + Cu
i Y(i,t) + Cd

i Z(i,t) + Cs
(iPg

s
(i,t)

}
(7.26)

7.6.2 Thermal Generation Units Constraints

A set of constraints governs the performance of the conventional units. These constraints are

imposed to respect the generation physical capabilities in providing the energy or the spinning

reserves in the day-ahead market. The interpretation of the constraints is represented as follows;

the minimum and maximum generation limits (Pgmin
i and Pgmax

i ) are imposed in (7.27). The start

up Y , and the shutdown Z binary variables are defined in (7.28) and (7.29) respectively. These

variables are defined to indicate the time interval the unit turned ON or OFF and account for the

associated costs.

The minimum up time (UT ) represents the time required for the unit to stay ON once committed

and is defined in (7.30). While the minimum down time (DT ) indicates the time required for the

units to stay OFF once decommitted and is imposed in (7.31). The ramping up (RU ) and ramping

down (RD) capabilities are defined in (7.32) and (7.33) respectively. In order to provide spinning

reserves, the units must be committed to produce an amount of power less than the maximum
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generation limit (7.34); this amount can be utilized as the spinning reserves if the generator has

enough ramping capability (7.35).

Pgmin
i X(i,t) ≤ Pg(i,t) ≤ Pgmax

i X(i,t) (7.27)

Y(i,t) ≥ X(i,t) −X(i,t−1) (7.28)

Z(i,t) ≥ X(i,t−1) −X(i,t) (7.29)

X(i,t) ≥
t−1∑

t−UT(i)−1

Y(i,t) (7.30)

1−X(i,t) ≥
t−1∑

t−DT(i)−1

Z(i,t) (7.31)

Pg(i,t) − Pg(i,t−1) ≤ X(i,t−1)R
U
(i) +

(
1−X(i,t−1)

)
Pgmin

i (7.32)

Pg(i,t−1) − Pg(i,t) ≤ X(i,t)R
D
(i) +

(
1−X(i,t)

)
Pgmin

i (7.33)

Pgg(i,t) + Pgs(i,t) ≤ Pg
max
(i) X(i,t) (7.34)

Pgs(i,t) ≤ (10/60) RU
i (7.35)

7.6.3 System-level Constraints

7.6.3.1 Power Balance

The power balance constraint (7.36) need to be satisfied at each time interval in the planning

horizon. The constraint guarantees that there are enough resources committed to fulfill the net-load
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requirement. Net-load is defined as the difference between the expected load Dex and the expected

renewable generation. This analysis is limited to consider only wind generation at the bulk power

system side Pw. Power resources constitute the power supplies from all committed thermal units

Pg, and the power decrements or increments achieved by the DR participation. The DRLr of the

load reduction program and the DRDn of the load shifting program are added to the generation

side since they participate in decreasing the load. However, the DRUp of the load shifting program

is augmented to the load (Dex) side since it provides load increase (see (7.36)). Nb refers to the

number of load buses, while Nw is the number of wind farms.

Ng∑
i

Pg(i,t) +

Nb∑
i

DRLr
(i,t) +

Nb∑
i

DRDn
(i,t) =

Nb∑
i

Dex
(i,t) −

Nw∑
i

Pw(i,t) +

Nb∑
i

DRUp
(i,t) (7.36)

7.6.3.2 Reserves Requirement

Spinning reserves represent the online capacity synchronized to the power system and ready

to be utilized within ten minutes following dispatch orders. Such reserves are needed to maintain

the power system frequency within stability limits in case of emergencies (generation trip). The

overall contribution from all units must be at least equal to the system SR requirement (7.37).

The amount of spinning reserves varies from one utility to another. Usually, it’s proportional to

the output power of the largest generating unit committed online. Such that, if the largest unit

experiences an outage, the system can recover safely without being forced to load interruptions.

Costs associated with sniping reserves are based on the opportunity cost lost for not participating

in the energy market. In this model, the reserves requirement constraint is augmented by the

reserves provided by demand response participation DRRes. Where, Res is the system reserves

requirement.

Ng∑
i

Pgs(i,t) +

Nb∑
i

DRRes
(i,t) ≥ Res, (7.37)
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7.6.3.3 Transmission Lines Thermal Limits and Security Constraints

Under normal operating conditions, the power flow limit for each transmission line F` is pre-

served using (7.38). Each line-flow limit should not be violated at any given time over the planning

horizon. The power transfer distribution factor PT(`,b) (assuming random slack distribution among

all buses) is used to determine the power line flow based on total bus injections. The map Λ(i,j) is

used to location of thermal power plants and wind generation on the buses.i.e., Λ(i,j) = 1, if unit i

is located on bus j.

− F` ≤
Nb∑
i

PT(`,i)

{ NG∑
j

Pg(j,t)Λg(i,j) +

Nw∑
j

Pw(j,t)Λw(i,j)+

DRLr
(i,t) +DRDn

(i,t) −DR
Up
(i,t) −D

ex
(i,t)

}
≤ F` ∀` ∈ NL,∀t ∈ T (7.38)

The security constraint is demonstrated in (7.39); under any given line contingency, the thermal

limit of the lines should not be violated at any given time over the planning horizon. The line

outage distribution factor LO(`,`) is used to find the relative change in each line flow after any given

contingency c.

− F` ≤
Nb∑
i

{PT(`,i) + LO(`,c)PT(c,i)}
{ NG∑

j

Pg(j,t)Λg(i,j) +

Nw∑
j

Pw(j,t)Λw(i,j)+

DRLr
(i,t) +DRDn

(i,t) −DR
Up
(i,t) −D

ex
(i,t)

}
≤ F` ∀c ∈ NL,∀` ∈ NL,∀t ∈ T (7.39)

7.7 Case Study

The proposed DR models are demonstrated using IEEE Reliability test system (RTS) (see

Fig. 7.4), information regards system topology, thermal units incremental heat rates, fuel price,

startup and shutdown costs, cycling restriction, and ramping rates are presented in [66]. Tuesday

of week 51 is the selected simulation day with system peak-load of 2850 MW, distribution of

load among load buses and load temporal characteristic are also presented in [66]. Hydro power

generation are assumed committed for only the spinning reserves adequacy with a total capacity
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of 25 MW. Wind generation with relatively high penetration level is assumed for the simulated

day. Wind farms provides 25% of the total system load. The inverse peaking characteristic of wind

production shown in Fig.7.5 adversely affect the load curve by producing a net-load curve with

much higher ramping requirement than originally required by the load curve. Spinning reserve is

assumed to be constant over the planning horizon hours with a value of 375 MW.

Figure 7.4 IEEE-RTS 24-Bus system.

7.8 Base-case scenario

Base-Case scenario provides the solution of the Security constraint unit commitment problem

without DR participation. All of the committed generators are shown in Fig. 7.6. Most of the units

are de-committed in the morning hours except for the two nuclear power plants at bus 18 and one
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Figure 7.5 System load, wind generation, and net-load

coal power plant at bus 23. During the noon and afternoon hours, mostly all of the power plants

are committed in addition to the expensive ones (Combustion turbines) at bus 1 and bus 2 in order

to supply both energy and reserves. The same units are also committed to provide the spinning

reserves requirements of 375 MW at each hour in the planning horizon (24 hour). The commitment

of the expensive units causes the market clearing price to jump to a high value as shown in Fig. 7.8.

7.8.1 Assumptions of TCLs Participation

The analysis conducted in the Sections (7.3 - 7.5) assume 25,000 air-conditioning load. The

average of the aggregated power without control is 31.851 MW. In this section, it is assumed that

there is a TCLs aggregator at each load bus.i.e., 17 aggregators. The number of devices and the

associated power consumption varies according to the size of the load bus. Three participation

scenarios are considered as shown in Table. 7.1. It is assumed that the average amount of flexible

loads (average TCLs’ power without control) in the three scenarios is 30%,35%, and 40% of the load

at that bus. The resulting amounts of flexible power are compared with the reference aggregator
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Figure 7.6 Thermal units commitment for energy adequacy (Base-Case scenario)

size (31.851 MW average power with 25,000 device) and the number of devices under control are

assigned accordingly. The details are shown in Table. 7.1.

7.8.2 Demand Response Participation in Spinning Reserves Program

This section provides the results of the unit commitment problem when all DR aggregatros are

willing to supply and participate in providing the systems’ spinning reserves. It is assumed that

all aggregators are willing to adjust their aggregated power as previously shown in Fig. 7.1. A No

dispatch time of 3-hours is imposed for all aggregatros once they are committed at any specific

hour. This time is required to recover the set-point back to the preference value and maintain the

customers’ comfort level. In this analysis, it is assumed that there are no costs associated with the
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Figure 7.7 Thermal units commitment for reserves adequacy (Base-Case scenario)

DR participation. The amount of cost reductions can be used as a basis to estimate the amount of

customers’ incentives in participating in such DR programs.

A comparison between the three DR participation scenarios is shown in Fig. 7.9. In the base

case, only thermal power plants are committed to provide the spinning reserves requirements.

Therefore, expensive units are committed especially during the peak hours to provide the reserves.

Under DR participation, all peaking units are de-committed. Thus, the market clearing price has

more flat profiles. The over all cost to supply both energy and reserves has been reduced from

$617,974.462 in the base case scenario to $525,674.3571 for scenario 1, and to $510,855.2468 for

scenario 2, and to $497,005.558 for scenario 3. A large cost reduction can be seen between the

base case and scenario 1 due to decommitting all of the expensive units. As an example, Table. 7.2
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Figure 7.8 Market Clearing Price (Base-Case scenario)

provides the details of the dispatching results for all DR aggregators under scenario 1. As we

can see, each aggregator is given at least 3-hours to enable smoothly charging the devices without

violations (overshooting or oscillations). The aggregators are committed and arranged to provide

the maximum market benefits with minimum possible cost.

7.8.3 Demand Response Participation in the Load Reduction Program

In this section, all DR aggregators are participating in the load reduction program. Similar to

the spinning reserves program, it is assumed that the aggregators are offering the load reduction

services with no associated costs. The obtained cost reductions can be used to estimate the amount

of rewards and other incentives the aggregatores deserve for providing such ancillary service. Ag-

gregators are expected to provide the load reduction as previously described in Fig. 7.2, the load

reduction is offered with specific service-time. i.e., the amount of time the customers are welling to

control their set-point, and the recovery time or the no dispatch-time which indicates the time re-

quired for the aggregators to bring the customers back to the preference set-point (charging time).

In this test case, its assumed that both the service-time and the no dispatch-time are 3-hours.



www.manaraa.com

100

Table 7.1 TCLs Participation Scenarios

Bus AVG Load
% AVG Flex MW Relative Size # of TCLs

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

1 89.80 30 35 40 26.9 31.4 35.9 0.85 0.99 1.13 21,145 24,669 28,193

2 80.35 30 35 40 24.1 28.1 32.1 0.76 0.88 1.01 18,919 22,072 25,226

3 148.88 30 35 40 44.7 52.1 59.6 1.40 1.64 1.87 35,056 40,899 46,742

4 61.44 30 35 40 18.4 21.5 24.6 0.58 0.68 0.77 14,468 16,879 19,290

5 59.08 30 35 40 17.7 20.7 23.6 0.56 0.65 0.74 13,911 16,230 18,548

6 113.43 30 35 40 34.0 39.7 45.4 1.07 1.25 1.42 26,710 31,161 35,613

7 103.98 30 35 40 31.2 36.4 41.6 0.98 1.14 1.31 24,484 28,564 32,645

8 141.79 30 35 40 42.5 49.6 56.7 1.34 1.56 1.78 33,387 38,951 44,516

9 144.15 30 35 40 43.2 50.5 57.7 1.36 1.58 1.81 33,943 39,601 45,258

10 160.69 30 35 40 48.2 56.2 64.3 1.51 1.77 2.02 37,838 44,145 50,451

11 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0

13 219.77 30 35 40 65.9 76.9 87.9 2.07 2.41 2.76 51,750 60,375 69,000

14 160.69 30 35 40 48.2 56.2 64.3 1.51 1.77 2.02 37,838 44,145 50,451

15 262.31 30 35 40 78.7 91.8 104.9 2.47 2.88 3.29 61,766 72,060 82,354

16 82.71 30 35 40 24.8 28.9 33.1 0.78 0.91 1.04 19,476 22,722 25,968

17 0 0 0 0 0 0 0 0 0 0 0 0 0

18 276.49 30 35 40 82.9 96.8 110.6 2.60 3.04 3.47 65,104 75,955 86,806

19 151.24 30 35 40 45.4 52.9 60.5 1.42 1.66 1.90 35,613 41,548 47,484

20 106.34 30 35 40 31.9 37.2 42.5 1.00 1.17 1.34 25,040 29,214 33,387

21 0 0 0 0 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0

The maximum amount of load reduction that can be achieved by the aggregators is the difference

between the aggregated power when all devices are regulated at the preference set-point (20◦C)

and the aggregated power when the set-point is adjusted to 22◦C (based on the assumption that

the maximum set-point adjustment is limited to +2◦C). The eigenvalue analysis is used to obtain

the aggregated power value at both set-points.

Fig. 7.10 demonstrates the results of the load reduction program. The effects on the net-load

shape can be seen in the right plot, while the changes in the market clearing price is shown in

the left graph. Participating in such DR programs can provide an overall energy efficiency from
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Figure 7.9 Aggregators Participating in the spinning reserves requirement.(Bottom: Sce-

nario 1). (Middle: Scenario 2). (Top: Scenario 3).

the net-load point of view, and as a tool to avoid committing the expensive units from the market

clearing price point of view.

Expensive units are also decommitted in this case due to the load reduction offered during the

peak hours. Since there is no restriction on the commitment time, the dispatch also utilize the

aggregators during the low load periods i.e, night hours, then the aggregators are allowed to charge

(bring the set-point back to 20◦C) in order to be able to provide the load reduction during the

peak hours. The objective function is reduced from being $617,974.462 in the base case scenario to

$592,435.0677 in scenario 1, and to $588,803.3014 in scenario 2, and to $585,031.4221 in scenario

3. As an example, Table. 7.3 provides the details of the aggregators dispatch under scenario 1.
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Table 7.2 Aggregators participation in spinning reserves (scenario 1)

time Agg 1 Agg 2 Agg 3 Agg 4 Agg 5 Agg 6 Agg 7 Agg 8 Agg 9 Agg 10 Agg 11 Agg 12 Agg 13 Agg 14 Agg 15 Agg 16 Agg 17 Total

1 0 0 34.28149 14.20233 0 0 0 32.81228 0 0 0 36.97503 60.48234 19.09968 0 0 0 197.8531

2 0 18.19795 0 0 0 0 23.46578 0 0 36.15646 0 0 0 0 0 34.00144 0 111.8216

3 19.15633 0 0 0 13.40943 0 0 0 32.56575 0 49.56699 0 0 0 0 0 0 114.6985

4 0 0 0 0 0 26.20321 0 0 0 0 0 0 0 0 63.67135 0 24.48898 114.3635

5 0 0 35.74205 14.80742 0 0 0 0 0 0 0 38.55035 63.05918 0 0 0 0 152.159

6 0 20.51892 0 0 0 0 0 36.1781 0 40.76785 0 0 0 0 0 38.33798 0 135.8029

7 23.0362 0 0 0 16.12534 0 0 0 39.16155 0 59.60618 0 0 22.4603 0 0 0 160.3896

8 0 0 0 0 0 32.95752 30.1854 0 0 0 0 0 0 0 80.0837 0 30.80142 174.028

9 0 0 46.02748 19.06853 0 0 0 0 0 0 0 49.64392 81.20562 0 0 0 0 195.9455

10 0 26.51142 0 0 0 0 0 46.74383 0 52.67401 0 0 0 0 0 49.5345 0 175.4638

11 29.34183 0 0 0 0 0 0 0 49.88111 0 75.92198 0 0 28.60828 0 0 0 183.7532

12 0 0 0 0 21.36145 40.81563 37.38254 0 0 0 0 0 0 0 99.17818 0 38.14545 236.8833

13 0 0 54.85747 22.72667 0 0 0 0 0 0 0 59.1677 96.78426 0 0 0 0 233.5361

14 0 30.19418 0 0 0 0 0 53.23711 0 59.99107 0 0 0 0 0 56.41544 0 199.8378

15 31.78276 0 0 0 0 0 0 0 54.03068 0 82.23788 0 0 30.98819 0 0 0 199.0395

16 0 0 0 0 21.94175 41.92441 38.39806 0 0 0 0 0 0 0 101.8724 0 39.18169 243.3183

17 0 0 53.39847 22.12222 0 0 0 0 0 0 0 57.59407 94.21016 0 0 0 0 227.3249

18 0 27.87137 0 0 0 0 0 49.14163 0 55.37601 0 0 0 0 0 52.07546 0 184.4645

19 27.90263 0 0 0 0 0 0 0 47.43447 0 72.19805 0 0 27.20506 0 0 0 174.7402

20 0 0 0 0 18.40768 35.17182 32.21344 0 0 0 0 0 0 0 85.46423 0 32.87086 204.128

21 0 0 43.11374 17.86141 0 0 0 0 0 0 0 46.50125 76.06496 0 0 0 0 183.5414

22 0 21.88045 0 0 0 0 0 38.5787 0 43.47301 0 0 0 0 0 40.8819 0 144.8141

23 21.59533 0 0 0 0 0 0 0 36.71206 0 55.87792 0 0 21.05545 0 0 0 135.2408

24 0 0 0 0 14.29474 27.31317 25.0158 0 0 0 0 0 0 0 66.36845 0 25.52633 158.5185

Because of the charging and discharging time restrictions, aggregators are dispatched throughout

the day to provide the load reduction service in only four time intervals.
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Figure 7.10 Aggregators Participating in the load reduction program.

7.8.4 Demand Response Participation in the Load Shifting Program

Load shifting program is offered by DR aggregators with three main time constraints as pre-

viously discussed in Fig. 7.3. First, the charging time which is required to move the operating
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Table 7.3 Aggregators participation in the load reduction program (scenario 1)

time Agg 1 Agg 2 Agg 3 Agg 4 Agg 5 Agg 6 Agg 7 Agg 8 Agg 9 Agg 10 Agg 11 Agg 12 Agg 13 Agg 14 Agg 15 Agg 16 Agg 17 Total

1 0 4.039681 0 3.082915 2.976607 0 0 0 0 0 0 8.026208 0 0 13.81996 0 0 31.94537

2 0 4.043853 0 3.086098 2.979681 0 0 0 0 0 0 8.034497 0 0 13.83423 0 0 31.97836

3 0 4.043848 0 3.086094 2.979677 0 0 0 0 0 0 8.034487 0 0 13.83422 0 0 31.97832

4 4.252284 0 7.441497 0 0 5.68743 5.209048 7.122575 7.228882 8.026186 11.00278 0 13.12893 4.145977 0 7.547804 5.315355 86.10875

5 4.254512 0 7.445396 0 0 5.69041 5.211777 7.126308 7.23267 8.030391 11.00855 0 13.13581 4.148149 0 7.551759 5.31814 86.15387

6 4.252595 0 7.442041 0 0 5.687846 5.209429 7.123097 7.229412 8.026773 11.00359 0 13.12989 4.14628 0 7.548356 5.315744 86.11505

7 0 4.040458 0 0 0 0 0 0 0 0 0 8.027751 0 0 0 0 0 12.06821

8 0 4.038693 0 0 0 0 0 0 0 0 0 8.024246 0 0 13.81658 0 0 25.87952

9 0 4.040666 0 0 0 0 0 0 0 0 0 8.028166 0 0 13.82333 0 0 25.89216

10 4.251516 0 7.440153 3.082349 2.976061 5.686402 5.208107 7.121289 7.227577 8.024736 11.0008 0 13.12656 4.145228 13.81743 7.546441 5.314395 105.969

11 4.252815 0 7.442427 3.083291 2.976971 5.688141 5.209699 7.123466 7.229786 8.027189 11.00416 0 13.13057 4.146495 0 7.548747 5.316019 92.17977

12 4.250312 0 7.438046 3.081476 2.975218 5.684792 5.206632 7.119273 7.22553 8.022464 10.99768 0 13.12284 4.144054 0 7.544304 5.31289 92.12551

13 0 4.037192 0 0 0 0 0 0 0 0 0 8.021263 0 0 0 0 0 12.05845

14 0 4.039063 0 0 0 0 0 0 0 0 0 8.02498 0 0 13.81785 0 0 25.88189

15 0 4.039056 0 0 0 0 0 0 0 0 0 8.024967 0 0 13.81782 0 0 25.88185

16 4.249672 0 7.436925 3.081012 2.97477 5.683936 5.205848 7.1182 7.224442 8.021255 10.99603 0 13.12086 4.14343 13.81143 7.543167 5.312089 105.9231

17 4.250329 0 7.438076 3.081489 2.97523 5.684815 5.206653 7.119301 7.225559 8.022496 10.99773 0 13.12289 4.144071 0 7.544334 5.312911 92.12588

18 4.25281 0 7.442418 3.083287 2.976967 5.688133 5.209692 7.123457 7.229777 8.027179 11.00415 0 13.13055 4.14649 0 7.548738 5.316013 92.17966

19 0 0 0 0 0 0 0 0 0 0 0 8.024744 0 0 0 0 0 8.024744

20 0 4.040656 0 0 0 0 0 0 0 0 0 8.028146 0 0 13.8233 0 0 25.8921

21 0 4.038712 0 0 0 0 0 0 0 0 0 8.024282 0 0 13.81664 0 0 25.87964

22 4.253098 4.040443 7.442921 3.083496 2.977168 5.688518 5.210045 7.123938 7.230266 8.027722 11.00489 0 13.13144 4.14677 13.82257 7.549248 5.316372 110.0489

23 4.252607 0 7.442063 3.08314 2.976825 5.687862 5.209444 7.123117 7.229433 8.026797 11.00362 0 13.12993 4.146292 0 7.548378 5.315759 92.17527

24 4.254498 0 7.445371 3.084511 2.978148 5.69039 5.21176 7.126283 7.232646 8.030364 11.00851 0 13.13576 4.148135 0 7.551733 5.318122 92.21623

temperature set-point form the preference value (20◦C) to a colder environment i.e., (18◦C). Such

that, devices during this time can store additional thermal energy. Second, the discharge time

which is required to move the devices back to (20◦C). This transition will enable the devices to

dissipate the stored thermal energy as a load reduction. The third time is the no dispatch time

which is specified by the aggregators to make sure that all devices under control return back to

the preference set-point (20◦C). In this case, both the charging time and the discharging time are

specified as 3 hours for all aggreagtors, while a no dispatch time is assigned as one hour. It is also

assumed that the load aggregators do not request costs to provide the load shifting services. Cost

reduction can be used as a basis to estimate the incentives each aggregator deserve.

The effects of the load shifting programs on the net-load waveform for the three participation

scenarios are shown in Fig. 7.11. Load aggregators are dispatched to increase the load (charge)

during the low price periods while provide load reduction (discharge) during the high price periods.

In general, such participation will help in decreasing the amount of the system’ ramp requirement

and decommitting the expensive units during the peak hours. The objective function value has

been reduced from $617,974.462 in the base case scenario to $607,054.5142 for scenario 1, and to

$604,689.8892 for scenario 2, and to $601,341.2109 scenario 3. Table. 7.4 shows the results of the
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dispatch for all DR aggregators as in scenario 1. Positive signs indicate the load increase periods

while the negative sign refer to the load decrease periods.

Due to the load shifting program restrictions.i.e., devices are required to charge at a colder

set-point to be able to provide the load reduction. It is most likely that the aggregators will be

dispatched just before the peak-hours for the load increase and provide the the load reduction

during the peak-hours as illustrated in Table.7.11.

5 10 15 20
Time (Hours)

0

500

1000

1500

2000

2500

3000

M
W

NetLoad BaseCase
 Scenario 1
 Scenario 2
 Scenario 3

5 10 15 20
Time (Hours)

0

5

10

15

20

25

30

35

40

P
re

c
e

 (
$

) 

Marginal Unit cost (Base Case)
Scenario 1
Scenario 2
Scenario 3

Figure 7.11 Aggregators Participating in the Load shifting program.

Table 7.4 Aggregators participation in the load shifting program (scenario 1)

time Agg 1 Agg 2 Agg 3 Agg 4 Agg 5 Agg 6 Agg 7 Agg 8 Agg 9 Agg 10 Agg 11 Agg 12 Agg 13 Agg 14 Agg 15 Agg 16 Agg 17 Total

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 4.148149 0 0 0 4.148149

6 0 0 0 3.083131 2.976817 0 0 0 0 0 11.00359 0 0 4.14628 0 0 0 21.20982

7 4.253113 4.040458 7.442948 3.083507 2.977179 5.688539 5.210064 7.123965 7.230292 8.027751 11.00493 8.027751 13.13149 4.146785 13.82262 7.549276 5.316392 118.0771

8 4.251256 4.038693 7.439698 3.082161 2.975879 5.686055 5.207788 7.120854 7.227135 8.024246 11.00012 8.024246 13.12575 -4.14497 13.81658 7.545979 5.31407 109.7355

9 4.253333 4.040666 7.443333 -3.08367 -2.97733 5.688833 5.210333 7.124333 7.230666 8.028166 -11.0055 8.028166 13.13217 -4.147 13.82333 7.549666 5.316666 75.65616

10 -4.25152 -4.03894 -7.44015 -3.08235 -2.97606 -5.6864 -5.20811 -7.12129 -7.22758 -8.02474 -11.0008 -8.02474 -13.1266 -4.14523 -13.8174 -7.54644 -5.31439 -118.033

11 -4.25282 -4.04017 -7.44243 -3.08329 -2.97697 -5.68814 -5.2097 -7.12347 -7.22979 -8.02719 -11.0042 -8.02719 -13.1306 0 -13.8216 -7.54875 -5.31602 -113.922

12 -4.25031 -4.0378 -7.43805 0 0 -5.68479 -5.20663 -7.11927 -7.22553 -8.02246 0 -8.02246 -13.1228 0 -13.8135 -7.5443 -5.31289 -96.8009

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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7.9 Conclusion

The capability of the TCLs has been evaluated in the day-ahead market for providing three main

demand response ancillary services; Namely, spinning reserves requirements, load reduction, and

load shifting. Appropriate models are designed for each demand response program and integrated

to the security constraint unit commitment problem for dispatching purposes. The models and

its related constraints are designed based on the performance of the controller (model predictive

control) and its capability to modify the aggregated power in each program. It is assumed that

the customers’ preference temperature set-point is 20◦C, and the assessment is made based on a

maximum set-point deviations of ±2◦C.

It has been shown that effective utilization of the TCL resources has great benefits in decom-

mitting the expensive peaking units and thus reducing the market clearing price volatility. It also

shown that the maximum benefits (cost reductions) can be obtained when all TCLs are utilized for

the system spinning reserves. This is due to the fact that the spinning reserves program discharge

the devices in much higher rates than in the load reduction and the load shifting programs. This

feature gives the spinning reserves program the advantage since the TCLs can provide the maximum

load reduction capability in only one hour then start the charging time for another dispatch order.

Therefore, each aggregator is committed multiple times and can provide more energy reductions.

Load shifting program was able to move loads from the peak hours and decommit the peaking

units. Thus, the Market clearing price converged to less prices than in the base case scenario.

However, the reduction in cost of the objective function was limited to small amounts. The total

amount of energy involved in the load shifting program is preserved compared to the load reduction

or the reserves programs where the actual energy consumption is reduced. The amount of load is

shifted to another period and supplied by less expensive units. Load shifting program shows its

advantage in reducing the net-load ramp ramping rates compared to the load reduction program

where an overall net-load energy efficiency is achieved.



www.manaraa.com

106

CHAPTER 8. GENERAL CONCLUSIONS AND FUTURE WORK

The objective of this thesis is to quantify the capability of utilizing the Thermostatically con-

trolled loads (TCLs) to support the power system flexibility in providing three main ancillary

services; mainly, load reduction, load-shifting, and the emergency spinning reserves. Such ancillary

services can have significant positive impacts on future grid flexibility by maintaining security as

renewable penetration increases on both the bulk and distribution sides. Such reinforcement has

become a priority for all power systems stakeholders.

The Major contributions of this thesis can be summarized as follows:

• The Development of the Extended Markov Chain Modeling Approach:

The work in this thesis provides a novel methodology to aggregate the TCLs. The Extended

Markov Model (EMM) has been developed to aggregate the TCLs when the operating temperature

set-point is modified. Due to this improvement to the existing Markov chain abstraction method,

the TCLs can be seen as gird-scale storage facility. The set-point control is required to partially

charge or discharge the accumulated thermal energy and thus modify the aggregated power demand.

Large-scale implementations over ultimately millions of devices can provide substantial support to

future grid operations while maintaining the customers comfort within acceptable ranges.

The EMM advantages manifested in two main merits. First, the flexibility to describe small

and large set-point adjustments in both directions. Second, the fast construction, mainly online,

since it is based on combining and restructuring to Markov chains which are already built during

the offline stage at fixed set-points. Appropriate linear mapping are established based on set-point

change magnitude and direction.
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• Sequential temperature Set-point Control

Under set-point control, the TCLs aggregate power experience two main challenges before it

converges to the new steady-state value, the abrupt load change and the power oscillations. Model

Predictive Control (MPC) with direct ON/OFF switching capability is proposed in this thesis to

overcome these challenges. This control input is used for two main purposes. First, determine the

optimal sequential control law, where appropriate time delay is assigned to devices at the instant

of the set-point change. Second, determine the ON/OFF switching actions required to minimize

devices’ synchronization and to curb possible oscillations. The advantage of this methodology, since

it is based on the thermal energy, is that the ON/OFF switching actions are minimal and converge

to zero over time. Adopting our approach will therefore not cause additional wear and tear to

devices or reduce their life expectancies.

• Heterogeneous Parameters Estimation and Clustering

The performance of the EMM is prone to relatively high errors under devices heterogeneity,

as buildings and devices have different characteristics. Limited amount of heterogeneity has been

reported in literature with relatively narrow Gaussian distributions. The work in this thesis provides

a more comprehensive definition to the heterogeneous parameters which covers a wide variety of

possible building characteristics and power ratings. A Systematic approach is proposed based on

the cycling equations derived from the Equivalent thermal parameter (ETP) model to estimate the

new heterogeneous parameters. In order to minimize the EMM error, clustering of building-specific

TCLs characteristics and power rating is performed using the K-mean clustering methodology.

TCLs are divided into clusters based on heat charging/discharging characteristics and their power

ratings. As a result, The EMM performance is highly improved and the error is reduced to almost

2%.

• Demand Response Programs for Ancillary Services

In the last part of this thesis, the MPC is used to quantify the capability of the TCLs in

providing three main ancillary services; spinning reserves, load reduction, and load shifting. The
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EMM is used as a predictive model when the temperature set-point is increased or decreased by 2◦C.

Appropriate demand response models are designed for each ancillary service and integrated to the

security constraint unit commitment problem. The models are used to investigate the economical

benefits that each demand response program can provide to the the day-ahead market. It has

been show that effective utilization of the TCLs can avoid committing the expensive peaking units,

reduce the market clearing price, provide peak clipping and overall energy efficiency aspects, and

finally contributes in shifting portion of the load while reducing the ramp rates associated with the

net-load.

Over all, Utilizing the TCLs as demand response resources can provide potential and valuable

support to the grid operation and control. Under large scale implementations, the TCLs can be

treated as gird-scale storage facility and provide ancillary services with minimal impacts on cus-

tomers’ comfort and devices’ integrity. Advanced modeling, monitoring, and control methodologies

need to be implemented to safely extract the services. The advancements of smart grid appliances

such as the advanced metering infrastructure and the intelligent thermostats can make this possible

in our future grid operations.

The future work can be summarized as follows:

• Quantify the capability of the Water heaters

The TCLs considered in this thesis are mainly air-conditioning devices. However, to improve

the capability of the DR aggregators it is required to exploit all the flexible resources. Adopting

the existing Extended Markov Modeling approach and the model predictive control architecture to

account for set-point control of water heater system is required. This results in the development

of a control coordination between the air conditioners and water heaters models for the various

ancillary services.

• Consider the distribution Network Topology

The clustering analysis performed in this thesis consider only the power ratings and the charging

characteristics. However, another dimension can be added to account for devices location in the
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distribution system. This feature will enable the aggregators to select the optimal control locations

for both reliability and economical aspects.

• Co-simulation platform

investigate the effects of demand side control for both the air-conditioners and water heaters

on the network operational parameters.



www.manaraa.com

110

BIBLIOGRAPHY

[1] Martinot, Eric. ”Grid Integration of Renewable Energy: Flexibility, Innovation, and Experi-

ence.” Annual Review of Environment and Resources 41.1 (2016).

[2] Market and Infrastructure Policy, 2013 flexible capacity procurement requirement, Tech. Rep.,

March 2012. [Online]. Available: http://www.CAISO.com/.

[3] S. Meyn, M. Negrete-Pincetic, G. Wang, A. Kowli, and E. Shafieepoorfard, The value of

volatile resources in electricity markets, in CDC2010, 2010, pp. 10291036, and submitted to

IEEE TAC, 2012

[4] Y. Makarov, C. Loutan, J. Ma, and P. de Mello, Operational impacts of wind generation on

california power systems, IEEE Transactions on Power Systems, vol. 24, no. 2, pp. 10391050,

May 2009.

[5] J. Smith, M. Milligan, E. DeMeo, and B. Parsons, Utility wind integration and operating

impact state of the art, IEEE Transactions on Power Systems, vol. 22, no. 3, pp. 900908,

August 2007

[6] B. Kirby, Ancillary services: Technical and commercial insights, Tech. Rep., July 2007. [On-

line].

Available:http://www.consultkirby.com.

[7] Miller, N. W., et al. ”Eastern frequency response study.” Contract 303 (2013): 275-3000.

[8] Miller, N. W., et al. ”California ISO (CAISO) - Frequency Response Study” General Electric

International, Report (2011).

[9] Energy Information Administration EIA ”International Energy Outlook, 2016 ” U.S. Depart-

ment of Energy, Washington, DC 20585. May 2015



www.manaraa.com

111

[10] FERC Order 755 ” Frequency Regulation Compensation in the Organized Wholesale Power

Markets,October,2011.

[11] MISO, Frequency regulation compensation - FERC order no. 755, Tech. Rep., March 2013.

[Online]. Available: https: //www.midwestiso.org

[12] National Renewable Energy Laboratory. ”Grid integration of aggregated demand response,

part 1: load availability profiles and constraints for the western interconnection.” September

2013.

[13] QDR, Q. ”Benefits of demand response in electricity markets and recommendations for achiev-

ing them.” US Dept. Energy, Washington, DC, USA, Tech. Rep (2006).

[14] Storage participation in ERCOT (prepared by the Texas energy storage alliance), January

2010. [Online]. Available: http://www.ercot.com/

[15] Energy Information Administration, ”Residential energy consumption survey,” U.S. Dept. En-

ergy, Washington, DC, Tech. Rep., 2001.

[16] Southern California Edison, Summer Discount Plan demand response program. Avail-

able: https://www.sce.com/wps/portal/home/residential/rebates-savings/summer-discount-

plan/terms

[17] Commonwealth Edison Company (CoomEd), Peak time saving demand response program.

Available: https://www.comed.com/WaysToSave/ForYourHome/Pages/PeakTimeSavings.aspx

[18] Potomac Electric Power Company (Maryland), Smart Grid Project. Available: https:

//www.smartgrid.gov/project.html

[19] City of Ames, Efficient Air Conditioner Rebate. Available at: http://www.cityofames.org

[20] PGE, Smart AC program. [Online]. Available: http://www.pge.com

[21] FPL, On call savings program. [Online]. Available: http:// www.fpl.com



www.manaraa.com

112

[22] Chong, C.Y.; Debs, A.S., ”Statistical synthesis of power system functional load models,”

in Decision and Control including the Symposium on Adaptive Processes, 1979 18th IEEE

Conference on , vol.2, no., pp.264-269, 12-14 Dec. 1979.

[23] Ihara, S.; Schweppe, F.C., ”Physically Based Modeling of Cold Load Pickup,” in Power Ap-

paratus and Systems, IEEE Transactions on , vol.PAS-100, no.9, pp.4142-4150, Sept. 1981.

[24] M. M. Adibi and L. H. Fink, ”Power system restoration planning,” in IEEE Transactions on

Power Systems, vol. 9, no. 1, pp. 22-28, Feb 1994.

[25] Malhame, R.; Chong, Chee-Yee, ”Electric load model synthesis by diffusion approximation of

a high-order hybrid-state stochastic system,” in Automatic Control, IEEE Trans, vol.30, no.9,

pp.854-860, Sep 1985.

[26] Malham, Roland, and Chee-Yee Chong. ”On the statistical properties of a cyclic diffusion

process arising in the modeling of thermostat-controlled electric power system loads.” SIAM

(1988): 465-480.

[27] Mortensen, R.E.; Haggerty, K.P., ”A stochastic computer model for heating and cooling loads,”

in Power Systems, IEEE Transactions on , vol.3, no.3, pp.1213-1219, Aug. 1988.

[28] Mortensen, R. E., and K. P. Haggerty. ”Dynamics of heating and cooling loads: models,

simulation, and actual utility data.” IEEE Transactions on Power Systems 5.1 (1990): 243-

249.

[29] Callaway, Duncan S. ”Tapping the energy storage potential in electric loads to deliver load fol-

lowing and regulation, with application to wind energy,” Energy Conversion and Management

50.5 (2009): 1389-1400.

[30] Kara, Emre Can, Michaelangelo D. Tabone, Jason S. MacDonald, Duncan S. Callaway, and Sila

Kiliccote. ”Quantifying flexibility of residential thermostatically controlled loads for demand

response: a data-driven approach.” In Proceedings of the 1st ACM Conference on Embedded

Systems for Energy-Efficient Buildings, pp. 140-147. ACM, 2014



www.manaraa.com

113

[31] Lu, Ning, and David P. Chassin. ”A state-queueing model of thermostatically controlled ap-

pliances.” Power Systems, IEEE Transactions on 19.3 (2004): 1666-1673.

[32] Kundu, Soumya, et al. ”Modeling and control of thermostatically controlled loads,” arXiv

preprint arXiv:1101.2157 (2011).

[33] Koch, Stephan, Johanna L. Mathieu, and Duncan S. Callaway. ”Modeling and control of

aggregated heterogeneous thermostatically controlled loads for ancillary services.” In Proc.

PSCC, pp. 1-7. 2011.

[34] J. L. Mathieu and D. S. Callaway, ”State Estimation and Control of Heterogeneous Thermo-

statically Controlled Loads for Load Following,” 2012 45th Hawaii International Conference

on System Sciences, Maui, HI, 2012, pp. 2002-2011.

[35] J. L. Mathieu, M. Kamgarpour, J. Lygeros and D. S. Callaway, ”Energy arbitrage with ther-

mostatically controlled loads,” 2013 European Control Conference (ECC), Zurich, 2013, pp.

2519-2526.

[36] J. L. Mathieu, S. Koch and D. S. Callaway, ”State Estimation and Control of Electric Loads to

Manage Real-Time Energy Imbalance,” IEEE Trans. Power Syst., vol. 28, no. 1, pp. 430-440,

Feb. 2013.

[37] S. Bashash and H. K. Fathy, ”Modeling and control insights into demand-side energy man-

agement through setpoint control of thermostatic loads,” Proceedings of the 2011 American

Control Conference, San Francisco, CA, 2011, pp. 4546-4553.

[38] Bashash, S.; Fathy, H.K., ”Modeling and Control of Aggregate Air Conditioning Loads for

Robust Renewable Power Management,” in Control Systems Technology, IEEE Transactions

on , vol.21, no.4, pp.1318-1327, July 2013.

[39] W. Zhang, J. Lian, C. Y. Chang and K. Kalsi, ”Aggregated Modeling and Control of Air

Conditioning Loads for Demand Response,” IEEE Trans. Power Syst., vol. 28, no. 4, pp.

4655-4664, Nov. 2013.



www.manaraa.com

114

[40] Kamgarpour, M.; Ellen, C.; Soudjani, S.E.Z.; Gerwinn, S.; Mathieu, J.L.; Mullner, N.; Abate,

A.; Callaway, D.S.; Franzle, M.; Lygeros, J., ”Modeling options for demand side participation

of thermostatically controlled loads,” in Bulk Power System Dynamics and Control - IX Opti-

mization, Security and Control of the Emerging Power Grid (IREP), 2013 IREP Symposium

, vol., no., pp.1-15, 25-30 Aug. 2013.

[41] S. Esmaeil Zadeh Soudjani and A. Abate, ”Aggregation of thermostatically controlled loads by

formal abstractions,” 2013 European Control Conference (ECC), Zurich, 2013, pp. 4232-4237.

[42] Soudjani, Sadegh Esmaeil Zadeh, Sebastian Gerwinn, Christian Ellen, Martin Frnzle, and

Alessandro Abate. ”Formal synthesis and validation of inhomogeneous thermostatically con-

trolled loads.” In International Conference on Quantitative Evaluation of Systems, pp. 57-73.

Springer International Publishing, 2014.

[43] S. Esmaeil Soudjani and A. Abate, ”Aggregation and Control of Populations of Thermostati-

cally Controlled Loads by Formal Abstractions,” IEEE Trans. Control Syst. Technol., vol. 23,

no.3, pp.975-990, 2015.

[44] B. M. Sanandaji, H. Hao and K. Poolla, ”Fast Regulation Service Provision via Aggregation

of Thermostatically Controlled Loads,” 2014 47th Hawaii International Conference on System

Sciences, Waikoloa, HI, 2014, pp. 2388-2397.

[45] H. Hao, B. M. Sanandaji, K. Poolla and T. L. Vincent, ”Aggregate Flexibility of Thermostat-

ically Controlled Loads,”IEEE Trans. Power Syst., vol. 30, no. 1, pp. 189-198, Jan. 2015.

[46] Sanandaji, Borhan M., He Hao, Kameshwar Poolla, and Tyrone L. Vincent. ”Improved battery

models of an aggregation of thermostatically controlled loads for frequency regulation.” In

American Control Conference (ACC), 2014, pp. 38-45. IEEE, 2014.

[47] Hao, He, Borhan M. Sanandaji, Kameshwar Poolla, and Tyrone L. Vincent. ”A generalized

battery model of a collection of thermostatically controlled loads for providing ancillary ser-



www.manaraa.com

115

vice.” In Communication, Control, and Computing (Allerton), 2013 51st Annual Allerton

Conference on, pp. 551-558. IEEE, 2013.

[48] Sinitsyn, Nikolai A., Soumya Kundu, and Scott Backhaus. ”Safe protocols for generating

power pulses with heterogeneous populations of thermostatically controlled loads.” Energy

Conversion and Management 67 (2013): 297-308.

[49] Mehta, Nishant, Nikolai A. Sinitsyn, Scott Backhaus, and Bernard C. Lesieutre. ”Safe con-

trol of thermostatically controlled loads with installed timers for demand side management.”

Energy Conversion and Management 86 (2014): 784-791.

[50] J. Hu; J. Cao; M. Z. Chen; J. Yu; J. Yao; S. Yang; T. Yong, ”Load Following of Multiple

Heterogeneous TCL Aggregators by Centralized Control,” in IEEE Transactions on Power

Systems , vol.PP, no.99, pp.1-1 (has been accepted for publication)

[51] H. Hao, B. M. Sanandaji, K. Poolla, and T. L. Vincent, “A generalized battery model of a

collection of thermostatically controlled loads for providing ancillary service,” in Proc. 51st

Annu. Allerton Conf. Commun., Control and Computing, 2013, pp. 551558.

[52] H. Hao, B. M. Sanandaji, K. Poolla and T. L. Vincent, “Aggregate Flexibility of Thermostat-

ically Controlled Loads,” IEEE Trans. Power Syst., vol. 30, no. 1, pp. 189-198, Jan. 2015.

[53] S. Vandael, B. Claessens, M. Hommelberg, T. Holvoet, and G. Deconinck, “A scalable three-

step approach for demand side management of plug-in hybrid vehicles,” IEEE Trans. Smart

Grid, vol. 4, no. 2, pp. 720728, Jun. 2013.

[54] F. Ruelens, B. J. Claessens, S. Vandael, S. Iacovella, P. Vingerhoets and R. Belmans, “De-

mand response of a heterogeneous cluster of electric water heaters using batch reinforcement

learning,” 2014 Power Systems Computation Conference, Wroclaw, 2014, pp. 1-7.

[55] F. Ruelens; B. J. Claessens; S. Vandael; B. De Schutter; R. Babuka; R. Belmans, “Resi-

dential Demand Response of Thermostatically Controlled Loads Using Batch Reinforcement

Learning,” in IEEE Trans. on Smart Grid , vol.PP, no.99, pp.1-11.



www.manaraa.com

116

[56] S. Iacovella, F. Ruelens, P. Vingerhoets, B. Claessens and G. Deconinck, “Cluster Control of

Heterogeneous Thermostatically Controlled Loads Using Tracer Devices,” in IEEE Trans. on

Smart Grid, vol. 8, no. 2, pp. 528-536, March 2017.

[57] M. Liu and Y. Shi, “Distributed model predictive control of thermostatically controlled appli-

ances for providing balancing service,” in Proc. IEEE Conf. Decision and Control, Los Angeles,

CA, USA, Dec. 2014, pp. 48504855.

[58] M. Liu, Y. Shi and X. Liu, “Distributed MPC of Aggregated Heterogeneous Thermostatically

Controlled Loads in Smart Grid,” in IEEE Trans. on Industrial Electronics, vol. 63, no. 2, pp.

1120-1129, Feb. 2016.

[59] K. Meng, D. Wang, Z. Y. Dong, X. Gao, Y. Zheng and K. P. Wong, “Distributed control of

thermostatically controlled loads in distribution network with high penetration of solar PV,”

in CSEE Journal of Power and Energy Systems, vol. 3, no. 1, pp. 53-62, March 2017.

[60] M. Liu and Y. Shi, ”Model Predictive Control of Aggregated Heterogeneous Second-Order

Thermostatically Controlled Loads for Ancillary Services,” IEEE Trans. Power Syst., vol. 31,

no. 3, pp. 1963-1971, 2016.

[61] A. Radaideh and V. Ajjarapu, ”Extracting expedient short-term services from Homogeneous

Group of Thermostatically Controlled Loads,” 2016 IEEE Power Energy Society Innovative

Smart Grid Technologies Conference (ISGT), Minneapolis, MN, USA, 2016, pp. 1-5.

[62] Ilic, S. M., C. W. Bullard, and P. S. Hrnjak,” Effect of shorter compressor on/off cycle times on

a/c system performance,” Air Conditioning and Refrigeration Center. College of Engineering.

University of Illinois at Urbana-Champaign., 2001.

[63] E. F. Camacho and C. Bordons, Model Predictive Control. Berlin, Germany: Springer, 1999.

[64] Naidu, D. Subbaram. Optimal control systems. CRC press, 2002.



www.manaraa.com

117

[65] James, Gareth, et al. ”An introduction to statistical learning,”. Vol. 6. New York: springer,

2013.

[66] Reliability Test System Task Force, “The IEEE Reliability Test System-1996,” IEEE

Trans.Power Syst, vol.14, no.3, pp.1010,1020, Aug 1999

[67] H. Pinto, F. Magnago, S. Brignone, O. Alsa, B. Stott, Security Constrained Unit Commitment:

Network Modeling and Solution Issues, Proc. of the 2006 IEEE PES Power Systems Conference

and Exposition, Oct. 29 2006-Nov. 1 2006, pp. 1759 1766.

[68] R. Chhetri, B. Venkatesh, E. Hill, Security Constraints Unit Commitment for a Multi-Regional

Electricity Market, Proc. of the 2006 Large Engineering Systems Conference on Power Engi-

neering, July 2006, pp. 47 52.

[69] J. Guy, Security Constrained Unit Commitment, IEEE Transactions on Power Apparatus and

Systems Vol. PAS-90, Issue 3, May 1971, pp. 1385-1390.

[70] B. Hobbs, M. Rothkopf, R. ONeill, and H. Chao, editors, The Next Generation of Electric

Power Unit Commitment Models, Kluwer, 2001.


	2017
	Sequential set-point control of thermostatic loads using extended Markov chain abstraction to improve future renewable energy integration
	Ashraf Ghassab Radaideh
	Recommended Citation


	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 General Introduction and Motivations
	1.2 Related Work
	1.2.1 Literature Highlights

	1.3 Proposed Approach and Contributions

	2.  THERMOSTATICALLY CONTROLLED LOADS (HOMOGENEOUS V.S. HETEROGENEOUS) 
	2.1  Introduction and Overview
	2.2 Equivalent Thermal Parameter Model
	2.3  Homogeneous TCLs Performance 
	2.4 Heterogeneous TCLs Performance
	2.5 Damping Power Oscillation in TCLs.
	2.6 Conclusion

	3.  MARKOV CHAIN ABSTRACTION FOR AGGREGATING THE TCLS
	3.1  Introduction and Overview
	3.2 Markov chain Representation
	3.2.1  Markov Models for Homogeneous system.
	3.2.2  Markov Models for Heterogeneous system.

	3.3  Sensitivity analysis of Heterogeneous system
	3.4 Markov model sensitivity to simulation time-step 
	3.5 Eigenvalue Analysis of Markov Chain Models
	3.6 Markov Model development at various temperature set-points
	3.7 Conclusion

	4. MARKOV MODEL EXTENSION FOR TEMPERATURE SET-POINT CONTROL
	4.1  Introduction and Overview
	4.2 The Extended Markov Model
	4.2.1  Set-point Increase Formulation
	4.2.2  Set-point Decrease Formulation

	4.3  Model Verification
	4.4 Conclusion

	5. CONTROL DEVELOPMENT FOR THE EXTENDED MARKOV MODEL
	5.1  Introduction and Overview
	5.2 Model Predictive Control with the EMM model 
	5.3  Model Performance and Comparison 
	5.3.1 Direct ON/OFF Switching Control at Fixed Temperature Set-point
	5.3.2 Direct ON/OFF Switching Control with Set-point Adjustment

	5.4 Conclusion

	6. MARKOV CHAINS MODELING IMPROVEMENTS
	6.1  Introduction and Overview
	6.2 Heterogeneous Parameters Estimation
	6.3 Initial Clustering Based on Power Ratings
	6.4  Devices Clustering Based on the Charging and Discharging Time Characteristics 
	6.5  Markov Model Performance under clustering
	6.6 Outside temperature variations
	6.7 Markov Model Performance under out-side temperature variations
	6.8 Conclusion

	7. AGGREGATION IN THE DAY-AHEAD MARKETS FOR ANCILLARY SERVICES
	7.1  Introduction and Overview
	7.2  Time-varying Model Predictive Control Framework
	7.3 Spinning Reserves Ancillary Services
	7.3.1  Demand Response Program for Spinning Reserves

	7.4  Load Reduction Ancillary Services
	7.4.1  Demand Response Program for Load Reduction

	7.5  Load-Shifting Ancillary Services
	7.5.1 Demand Response Program for Load-Shifting 

	7.6  Security Constraint Unit Commitment Co-Optimization Problem 
	7.6.1 Objective Function
	7.6.2  Thermal Generation Units Constraints
	7.6.3 System-level Constraints

	7.7 Case Study
	7.8 Base-case scenario
	7.8.1 Assumptions of TCLs Participation 
	7.8.2 Demand Response Participation in Spinning Reserves Program 
	7.8.3 Demand Response Participation in the Load Reduction Program
	7.8.4 Demand Response Participation in the Load Shifting Program

	7.9 Conclusion

	8. GENERAL CONCLUSIONS AND FUTURE WORK
	BIBLIOGRAPHY

